An unprecedented structural phase transition in struvite-type compounds: dimorphism of KMgAsO4(H2O)6

2019 ◽  
Vol 74 (1) ◽  
pp. 9-14
Author(s):  
Matthias Weil

AbstractThe crystal structure of struvite-type KMgAsO4(H2O)6 has been redetermined from single crystal X-ray diffraction data at room temperature. The previous structure model based on powder X-ray diffraction data was confirmed with higher precision and accuracy and with all hydrogen atoms located. KMgAsO4(H2O)6 undergoes a reversible phase transition of the continuous type at 263(2) K, changing the symmetry from orthorhombic to monoclinic. The corresponding Pnm21→P1121 symmetry reduction is of a translationengleiche type with index 2 and was monitored by temperature-dependent powder X-ray diffraction measurements. Such a phase transition is unprecedented for struvite-type compounds. The crystal structure of the monoclinic polymorph was determined from a two-domain crystal at 100 K. Except for the motion of one of the water molecules towards stronger hydrogen-bonding interactions, structural changes between the two polymorphs are small.

2004 ◽  
Vol 68 (5) ◽  
pp. 757-767 ◽  
Author(s):  
T. Mihajlović ◽  
H. Effenberger

AbstractHydrothermal synthesis produced the new compound SrCo2(AsO4)(AsO3OH)(OH)(H2O). The compound belongs to the tsumcorite group (natural and synthetic compounds with the general formula M(1)M(2)2(XO4)2(H2O,OH)2; M(1)1+,2+,3+ = Na, K, Rb, Ag, NH4, Ca, Pb, Bi, Tl; M(2)2+,3+ = Al, Mn3+, Fe3+, Co, Ni, Cu, Zn; and X5+,6+ = P, As, V, S, Se, Mo). It represents (1) the first Sr member, (2) the until now unknown [7]-coordination for the M(1) position, (3) the first proof of (partially) protonated arsenate groups in this group of compounds, and (4) a new structure variant.The crystal structure of the title compound was determined using single-crystal X-ray diffraction data. The compound is monoclinic, space group P21/a, with a = 9.139(2), b = 12.829(3), c = 7.522(2) Å, β = 114.33(3)°, V = 803.6(3) Å3, Z = 4 [wR2 = 0.065 for 3530 unique reflections]. The hydrogen atoms were located experimentally.


2014 ◽  
Vol 28 (25) ◽  
pp. 1450168 ◽  
Author(s):  
Nirup Bandaru ◽  
Ravhi S. Kumar ◽  
Jason Baker ◽  
Oliver Tschauner ◽  
Thomas Hartmann ◽  
...  

Structural behavior of bulk WS 2 under high pressure was investigated using synchrotron X-ray diffraction and diamond anvil cell up to 52 GPa along with high temperature X-ray diffraction and high pressure Raman spectroscopy analysis. The high pressure results obtained from X-ray diffraction and Raman analysis did not show any pressure induced structural phase transformations up to 52 GPa. The high temperature results show that the WS 2 crystal structure is stable upon heating up to 600°C. Furthermore, the powder X-ray diffraction obtained on shock subjected WS 2 to high pressures up to 10 GPa also did not reveal any structural changes. Our results suggest that even though WS 2 is less compressible than the isostructural MoS 2, its crystal structure is stable under static and dynamic compressions up to the experimental limit.


2021 ◽  
pp. 1-5
Author(s):  
Junyan Zhou ◽  
Congcong Chai ◽  
Munan Hao ◽  
Xin Zhong

A new organic–inorganic hybrid lithium m-phenylenediamine sulfate (LPS), Li2(C6H10N2)(SO4)2, was synthesized under aqueous solution conditions. The X-ray powder diffraction study determined that the title compound crystallized in a monoclinic system at 300 K, with unit-cell parameters a = 7.8689(6) Å, b = 6.6353(5) Å, c = 11.8322(10) Å, β = 109.385(3) °, V = 582.77(8) Å3. Indexing of the diffraction patterns collected from 100 to 600 K reveals that LPS has no structural phase transition within the measured temperature range, and the volume expansion coefficient is approximately 2.79 × 10−5 K−1. The crystal structure was solved based on the single-crystal diffraction data with space group P21/m. Lithium and SO42− are found to form quasi-two-dimensional anti-fluorite [LiSO4] layers stacking along the c-axis, with m-phenylenediamine molecules inserted in the anti-fluorite layers and forming hydrogen bonds to the SO42−. This explains a moderate anisotropic expansion in LPS.


Author(s):  
S. Kek ◽  
M. Aroyo ◽  
U. Bismayer ◽  
C. Schmidt ◽  
K. Eichhorn ◽  
...  

AbstractIn this study it is shown that the antiferrodistortive phase transition in titanite, CaTiSiOIn order to study the stepwise structural changes synchrotron radiation was used to collect X-ray diffraction data at 100 K, 295 K and 530 K on the 4-circle diffractometer at HASYLAB using a wavelength of 0.560(1) Å. A total of 2292 reflections were recorded at 100 K, 1540 at 295 K and 1442 at 530 K and reduced to 705 (100 K), 707 (295 K) and 358 (530 K) unique observations respectively (sin


2011 ◽  
Vol 67 (3) ◽  
pp. 244-249 ◽  
Author(s):  
Pilar García-Orduña ◽  
Slimane Dahaoui ◽  
Claude Lecomte

The crystal structure of the 2:1 charge-transfer complex of tetrathiafulvalene [2,2′-bis(1,3-dithiolylidene)] and bromanil (tetrabromo-1,4-benzoquinone) [(TTF)2-BA, (C6H4S4)2–C6Br4O2] has been determined by X-ray diffraction at room temperature, 100 and 25 K. No structural phase transition occurs in the temperature range studied. The crystal is made of TTF–BA–TTF sandwich trimers. A charge-transfer estimation between donor and acceptor (0.2 e) molecules is proposed in comparison to the molecular geometries of TTF–BA and TTF and BA isolated molecules. Displacement parameters of the molecules have been modeled with the TLS formalism.


2015 ◽  
Vol 30 (4) ◽  
pp. 370-371
Author(s):  
J.A. Kaduk ◽  
K. Zhong ◽  
T.N. Blanton ◽  
S. Gates ◽  
T.G. Fawcett

The room-temperature crystal structure of levothyroxine sodium pentahydrate has been refined using synchrotron powder diffraction data. The compound crystallizes in space group P1 (#1) with a = 8.2489(4), b = 9.4868(5), c = 15.8298(6) Å, α = 84.1387(4), β = 83.1560(3), γ = 85.0482(3) deg, V = 1220.071(9) Å3, and Z = 2. Hydrogen atoms (missing from the previously-reported structure) were included.


2018 ◽  
Author(s):  
Rüdiger W. Seidel

The crystal structure of “‘bis glycine’ squarate”, recently published in RSC Advances [Tyagi et al., RSC Adv. 2016, 6, 24565], is revised. Re-refinement of the structure against<br>the original X-ray diffraction data after correct placement of the donor hydrogen atoms proves that the compound is the previously reported diglycinium squarate [Aniola et al.,<br>New J. Chem. 2014, 38, 3556].


2018 ◽  
Author(s):  
Rüdiger W. Seidel

The crystal structure of “‘bis glycine’ squarate”, recently published in RSC Advances [Tyagi et al., RSC Adv. 2016, 6, 24565], is revised. Re-refinement of the structure against<br>the original X-ray diffraction data after correct placement of the donor hydrogen atoms proves that the compound is the previously reported diglycinium squarate [Aniola et al.,<br>New J. Chem. 2014, 38, 3556].


2008 ◽  
Vol 64 (4) ◽  
pp. 466-475 ◽  
Author(s):  
P. Lozano-Casal ◽  
D. R. Allan ◽  
S. Parsons

The crystal structure of L-α-glutamine has been elucidated at room temperature at pressures between 0 and 4.9 GPa by using single-crystal high-pressure X-ray diffraction techniques. The structure is primarily stabilized by five N—H...O intermolecular interactions, which link molecules in a herringbone-like layer arrangement, giving rise to voids within the solid. The application of pressure on the structure results in a reduction in the size of the voids, as a consequence of the shortening of the N—H...O hydrogen bonds, which compress to minimum N...O distances of around 2.6 Å, without driving the crystal structure to a phase transition. The decrease in the hydrogen-bond distances is due to the necessary stabilization of the structure, which arises from molecules modifying their positions to optimize electrostatic contacts and minimize the occupied space. Hirshfeld surfaces and fingerprint plots have been used to rapidly assess the structural changes that occur on application of pressure.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1704-C1704
Author(s):  
Kristīne Krūkle-Bērziņa ◽  
Andris Actiņš

Xylazine hydrochloride (2-(2,6-xylidino)-5,6-dihydro-4H-1,3-thiazine hydrochloride) is an adrenergic α-agonist used as a sedative, analgesic, and muscle relaxant in veterinary medicine. It has four polymorphous forms (A, Z, M and X), monohydrate (H), hemihydrate and solvates with dichloromethane and 2-propanol. It has been reported that the polymorph X is thermodynamically the least stable of these polymorphs, while the A is the most stable form at temperatures above 500C. The X forms only in H dehydration process, and at elevated temperature X transforms to polymorph A [1]. The crystal structures of the polymorphs A and X as well as hydrate H have been reported. Crystal structure of A and X have been determined from the powder X-ray diffraction data (PXRD), whereas that of hydrate have been determined from single crystal X-ray diffraction data [2-3]. In this study structure of A have been determined from single crystal data and compared to that determined by PXRD data. Crystal structures of A, X and H have been compared and analysed. Molecule conformation in crystal structure of all three forms is the same and molecular packing is similar. However, that in monohydrate H and polymorph X is basically the same and the only difference is the inclusion of the water molecules next to the chlorine anions, whereas relative xylazine moiety orientation and arrangement of the chlorine anions is different in the structure of polymorph A. The structural similarity or differences between all three forms noted above were also approved by the 2D-fingerprint plots of the Hirshfeld surfaces. Analysis of all three form crystal structures allowed to better understand complex solid-state phase transition from xylazine hydrochloride polymorph X to polymorph A during and after the dehydration of it monohydrate H.


Sign in / Sign up

Export Citation Format

Share Document