A biomimetic cerium-based biosensor for the direct visual detection of phosphate under physiological conditions

Author(s):  
Thibaud Rossel ◽  
Marc Creus

<div><div><div><p> </p><p>An indicator displacement assay (IDA) was used to probe phosphate ions in acqueous medium at neutral pH using a dinuclear cerium based complex [Ce<sub>2</sub>(HXTA)]3+. The homoleptic complex can be used to detect phosphate ions in micromolar concentrations either spectrophotometrically or with the naked-eye. To our knowledge, this is the biomimetic detection system with the highest affinity known to date for selective, naked-eye based phosphate recognition under physiological conditions.</p> </div></div></div>

2019 ◽  
Author(s):  
Thibaud Rossel ◽  
Marc Creus

<div><div><div><p> </p><p>An indicator displacement assay (IDA) was used to probe phosphate ions in acqueous medium at neutral pH using a dinuclear cerium based complex [Ce<sub>2</sub>(HXTA)]3+. The homoleptic complex can be used to detect phosphate ions in micromolar concentrations either spectrophotometrically or with the naked-eye. To our knowledge, this is the biomimetic detection system with the highest affinity known to date for selective, naked-eye based phosphate recognition under physiological conditions.</p> </div></div></div>


2019 ◽  
Vol 55 (99) ◽  
pp. 14894-14897
Author(s):  
Thibaud Rossel ◽  
Marc Creus

An indicator displacement assay (IDA) was used to probe phosphate ions in an aqueous medium at neutral pH using a dinuclear cerium based complex [Ce2(HXTA)]3+.


2020 ◽  
Author(s):  
Thibaud Rossel

<p>Phosphates anions are important molecules for the society in general and involved for example in medicine or agriculture. Detection of them with chemosensor is a challenge due to the chemical properties of the anions. In this context, an exquisite chemosensor would have exquisite affinity, selectivity and low detection limit. Here we address this problem using a simple fluorescent indicator displacement assay (FID) with only commercially available chemicals used to probe phosphate ions in aqueous medium using cerium ammonium nitrate (CAN). The monomeric homoleptic complex detects phosphate ions in low millimolar concentrations either spectrophotometrically or with the naked-eye with high selectivity over other anions and high affinity. To our knowledge, this is the first description of a simple sensitive, selective and high affinity cerium-based chemosensor for the fluorescent selective naked-eye detection of phosphate in aqueous medium. It proved useful for the detection of phosphate in Coca Cola. </p>


2018 ◽  
Author(s):  
Thibaud Rossel ◽  
Marc Creus

<div><div><div><p>An indicator displacement assay (IDA) was used to probe phosphate ions in water using a dinuclear cerium based complex [Ce<sub>2</sub>(HXTA)]<sup>3+</sup>. The homoleptic complex is able to detect phosphates ions in micromolar concentrations both spectrophotometrically and with the naked-eye</p></div></div></div>


2020 ◽  
Author(s):  
Thibaud Rossel

<div><div><div><p>Phosphate ions are socially important chemicals. They are involved in crucial processes such as for example in medicine or agriculture. However, their sensing with a chemosensor is ardous due to their chemical properties. In this context, a remarkable chemosensor would reveal an outstanding affinity, a high selectivity and a low detection limit in favor of an analyte. This has long been addressed in the past by chemists in synthesizing com- plex chemical architectures as receptors but with questionable successes. Astonishingly, here, for phosphate detection, we address this problem profiting by a simple fluorescent indicator displacement assay (FID) with only commercially available chemicals. We used cerium ammonium nitrate (CAN) combined with a fluorophore to probe phosphate ions in aqueous mediums. The inorganic complex detects phosphate ions in low millimolar concentrations either spectrophotometrically or with the naked-eye with high selectivity and affinity over other anions. To our knowledge, this is the first description of a simple sensitive, selective and high affinity cerium-based chemosensor for the fluorescent selective naked-eye detection of phosphate in aqueous medium. It proved useful for the detection of phosphate in Coca-Cola©.</p></div></div></div>


2021 ◽  
Author(s):  
Thibaud Rossel

<div><div><div><p>Phosphate ions are socially important chemicals. They are involved in crucial processes such as for example in medicine or agriculture. However, their sensing with a chemosensor is ardous due to their chemical properties. In this context, a remarkable chemosensor would reveal an outstanding affinity, a high selectivity and a low detection limit in favor of an analyte. This has long been addressed in the past by chemists in synthesizing com- plex chemical architectures as receptors but with questionable successes. Astonishingly, here, for phosphate detection, we address this problem profiting by a simple fluorescent indicator displacement assay (FID) with only commercially available chemicals. We used cerium ammonium nitrate (CAN) combined with a fluorophore to probe phosphate ions in aqueous mediums. The inorganic complex detects phosphate ions in low millimolar concentrations either spectrophotometrically or with the naked-eye with high selectivity and affinity over other anions. To our knowledge, this is the first description of a simple sensitive, selective and high affinity cerium-based chemosensor for the fluorescent selective naked-eye detection of phosphate in aqueous medium. It proved useful for the detection of phosphate in Coca-Cola©.</p></div></div></div>


2020 ◽  
Author(s):  
Thibaud Rossel

<div><div><div><p>Phosphate ions are socially important chemicals. They are involved in crucial processes such as for example in medicine or agriculture. However, their sensing with a chemosensor is ardous due to their chemical properties. In this context, a remarkable chemosensor would reveal an outstanding affinity, a high selectivity and a low detection limit in favor of an analyte. This has long been addressed in the past by chemists in synthesizing com- plex chemical architectures as receptors but with questionable successes. Astonishingly, here, for phosphate detection, we address this problem profiting by a simple fluorescent indicator displacement assay (FID) with only commercially available chemicals. We used cerium ammonium nitrate (CAN) combined with a fluorophore to probe phosphate ions in aqueous mediums. The inorganic complex detects phosphate ions in low millimolar concentrations either spectrophotometrically or with the naked-eye with high selectivity and affinity over other anions. To our knowledge, this is the first description of a simple sensitive, selective and high affinity cerium-based chemosensor for the fluorescent selective naked-eye detection of phosphate in aqueous medium. It proved useful for the detection of phosphate in Coca-Cola©.</p></div></div></div>


The Analyst ◽  
2017 ◽  
Vol 142 (17) ◽  
pp. 3235-3240 ◽  
Author(s):  
Yaocai Wang ◽  
Luzhu Yang ◽  
Yanjun Wang ◽  
Wei Liu ◽  
Baoxin Li ◽  
...  

We proposed a sensitive colorimetric assay for detecting telomerase activity. The telomerase activity of 5 and 20 HeLa cell lysates can be detected via UV-vis spectroscopy and the naked eye, respectively.


2012 ◽  
Vol 522 ◽  
pp. 347-350
Author(s):  
Xi Lin Zhu ◽  
Yong Yu ◽  
Qiang Wei ◽  
Xiang Zou ◽  
Chen Jun Huang

t is need to experiment to verify the correctness and validity of various stages in system design after gauge visual detection system designing between high signals and contact net. Then it does error analysis from lighting conditions, camera resolution, binocular imaging system installation structure, camera out of synchronized, noise and subsequent image processing operations, etc. It analysis the systematic errors principle and specific impact, then identifies specific improvements.


Sign in / Sign up

Export Citation Format

Share Document