Colon targeting oral matrix tablets of mesalamine: Design, development and invitro evaluation

Author(s):  
Audinarayana N ◽  
Anala Srinivasulu ◽  
Vellore Sruthikumari ◽  
Likitha ◽  
Ananda Deepak V

The principle in this present research is to formulate Mesalamine containing colon targeted tablets by using different polymers and evaluate the effect of different polymers in drug release pattern. The matrix tablets of Mesalamine are formulated by polysaccharides based polymers like Cellulose acetate phthalate (CAP), Ethyl cellulose (EC), Guar gum (GG) and Xanthan gum (XG) which protects the drug to release in Stomach and Small Intestine. The invitro drug dissolution investigation of F2 (GG and XG) Matrix tablet was controlled by swelling into a viscous gel in colonic pH, which have been accomplished as the best tablet. The optimized tablet F2 was found to be stable in stability study (short term) with reproducible evaluation data, which also shows the highest swelling index, increased viscosity in colonic pH. The drug release pattern from the F2 formulation follows swelling and erosion behavior. From the data it show that F2 tablets suitable for providing colon targeted drug delivery.

Author(s):  
Vidya Viswanad ◽  
Shammika P ◽  
Aneesh Tp

ABSTRACTObjective: The current research deals with the formulation and evaluation of synthesized quinazolinone derivative for colon site specific delivery.Methods: The synthesized quinazolinone derivative was enteric coated 5% Eudragit L-100 with by wet granulation method using guar gum, pectin,and guar gum pectin combination as hydrophilic polymer. The prepared matrix tablet was characterized by differential scanning calorimetry andevaluated for different pre-compression and post-compression studies and drug release profiles.Results: All the matrix tablets were within the range of pharmacopeial limits with better flow properties. All the six formulations of matrix tablets haddisintegrated within 5-6 minutes. The optimized formulation selected was F6 formulation combination of guar gum and pectin with 95.79% of drugrelease than compared to the remaining formulation. The optimized matrix tablets followed zero order kinetics with Fickian diffusion.Conclusion: The results proposed that the combination of guar gum and pectin coated tablet with 5% Eudragit L-100 of synthesized quinazolinonederivative is a promising colon site specific delivery.Keywords: Quinazolinone derivative, In vitro drug release, Disintegration time, Guar gum, Pectin, 5% Eudragit L-100, Colon site-specific delivery, Wetgranulation, Compression.


Author(s):  
Mona Semalty ◽  
T Bisht ◽  
A Semalty

The aim of the present study was to develop sustained release, multilayered-matrix tablet of aceclofenac using natural polymers-guar gum (GG) and xanthan gum (XG) as carrier for core matrix and hydroxyl propylmethyl cellulose (HPMC K-15M), sodium carboxymethylcellulose (NaCMC) and ethyl cellulose (EC) and polyvinylpyrrolidone (PVP-K30) for preparing bottom and top layers. The formulated tablets were evaluated for uniformity of weight, drug content, friability, hardness, thickness, swelling index and in vitro drug release. The physicochemical properties of tablets were found within the limits. The physiochemical investigation showed that aceclofenac matrix tablet prepared with xanthan gum showed better dissolution profile as compared to that of guar gum. Matrix tablets of xanthan gum with 6% W/V xanthan gum (MTX1) showed the highest percent drug release (88.98%), while matrix tablets of guar gum with 6% W/V guar gum (MTG1) showed the highest percent drug release (73.89%) at the end of 8 hours in pH 6.8 phosphate buffer. Among the matrix tablet of xanthan gum MTX4 (with 24% W/V of xanthan) showed the lowest percent drug release (49.6%) and while among the guar gum tablets MTG4  (with 24% W/V of guar gum) showed the lowest percent drug release (48.65%) at the end of 8 hours. It was concluded that increasing the concentration of gum from 6% W/V to 24% W/V in the formulation decreased the amount of drug release from the tablet. The xanthan gum based matrix tablets of aceclofenac were found to be superior to that of guar gum matrix tablets for potential therapeutic uses. 


2015 ◽  
Vol 14 (1) ◽  
pp. 91-101
Author(s):  
Nazia Tajrin ◽  
Md Elias Al Mamun ◽  
Md Habibur Rahman ◽  
Md Selim Reza

The study was performed to investigate the effect of channeling agent on the release profile of Stavudine from Methocel K100 LVCR and Ethocel 20 cps based matrix systems. Stavudine, a nucleoside analog drug, is used in the treatment of acquired immune deficiency syndrome (AIDS). Stavudine matrix tablet was prepared using Methocel K100 LVCR and Ethocel 20 cps as polymer and also using PEG 3350 and PEG 6000 as channeling agents. The drug release mechanisms from different matrix tablets were explored and explained by zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The release rate, extent and mechanisms were found to be governed by polymer type used and the content of the channeling agent. It was found that the release of drug from the matrix tablet was increased with the increasing concentration of channeling agent. However, PEG 6000 enhanced the release of drug greater than PEG 3350 from the matrix. On the other hand, Stavudine matrix containing Ethocel 20 cps showed a strong tendency to retard the drug release to 51-56% after 8 hours of dissolution, whereas the release was found to be increased for the Methocel containing matrix to 90-100%. Kinetic modeling of dissolution profiles revealed drug release mechanism ranged from diffusion controlled or Fickian transport to anomalous type or non- Fickian transport, which was mainly dependent on the presence of relative amount of channeling agent and type of polymer. These studies indicate that the proper balance between a matrix forming agent and a channeling agent can produce optimum drug dissolution kinetics from Stavudine matrix tablet. The mechanism was also revealed by Scanning Electron Microscope (SEM) pictures taken at various intervals of dissolution which showed that the extent of pore formation in the matrix increases with the increasing amount of channeling agent and also the hydrophilic nature of the polymer used in the formulation.Dhaka Univ. J. Pharm. Sci. 14(1): 91-101, 2015 (June)


2012 ◽  
Vol 1 (8) ◽  
pp. 186 ◽  
Author(s):  
Urmi Das ◽  
Mohammad Salim Hossain

<p>Sustained release Carvedilol matrix tablets constituting Kollidon SR were developed in this study in an attempt to investigate the effect of release modifiers on the release profile of Carvedilol from matrix. Three matrix tablet formulations were prepared by direct compression of Kollidon SR in combination with release modifier (HPMC and Microcrystalline Cellulose) and magnesium stearate. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release. Incorporation of HPMC in the matrix tablet prolonged the release of drug but incorporation of Microcrystalline Cellulose showed superimposable release pattern with an initial burst effect as confirmed by mean dissolution time and Higuchi release rate data. After 7 hours of dissolution, Carvedilol release from the matrix systems were 91.42%, 83.41%, from formulation F1 and F2 respectively. Formulation F3 exhibited 100 % release at 4 hours. All the tablet formulations showed acceptable pharmaco-technical properties and complied with the in-house specifications for tablet weight variation, friability, hardness, thickness, and diameter. Prepared tablets also showed sustained release property for carvedilol. The drug release mechanism from the matrix tablets of F1 and F2 was found to be followed by Fickian and F3 by Non-Fickian mechanism.</p><p>DOI: <a href="http://dx.doi.org/10.3329/icpj.v1i8.11095">http://dx.doi.org/10.3329/icpj.v1i8.11095</a></p> <p>International Current Pharmaceutical Journal 2012, 1(8): 186-192</p>


Author(s):  
Tulsi Bisht ◽  
Rishishwar Poonam

The aim of present work was to develop once daily sustained release matrix tablet of aceclofenac by wet granulation technique using natural gums i.e.: gum acacia, guar gum and Xanthan gum. In this present study matrix tablets were prepared using three different methods and a comparative study was done. Aceclofenac sodium being the newer derivative of diclofenac having short biological half life (4hrs.), so it requires more than one dose per day to maintain therapeutic dose. The prepared tablets were evaluated for various parameters like weight variation, hardness, swelling index, friability, percent drug release and various release profile like zero order, first order, Higuchi's, and Koshemeyrs-peppa. All the evaluation parameters met pharmacopoeial specifications and through dissolution studies it was matrix tablets prepared with method 2 shows heighest percent drug release and matrix tablet prepared by method 3 showed lowest percent drug release at the end of 8 hrs. (Shown in fig. 8, comparative release study of all three formulations). Matrix tablet of aceclofenac were successfully prepared and evaluated and it can be concluded that matrix tablet prepared with natural gums showed release rate for a prolonged time and can be of great importance for “once daily” tablet to reduce side effects and toxicity related with NSAIDs.  


Author(s):  
P B Parejiya ◽  
B S Barot ◽  
P K Shelat

The present study was carried out to fabricate a prolonged design for tramadol using Kollidon SR (Polyvinyl acetate and povidone based matrix retarding polymer). Matrix tablet formulations were prepared by direct compression of Kollidon SR of a varying proportion with a fixed percentage of tramadol. Tablets containing a 1:0.5 (Drug: Kollidon SR) ratio exhibited a rapid rate of drug release with an initial burst effect. Incorporation of more Kollidon SR in the matrix tablet extended the release of drug with subsequent minimization of the burst effect as confirmed by the mean dissolution time, dissolution efficiency and f2 value. Among the formulation batches, a direct relationship was obtained between release rate and the percentage of Kollidon SR used. The formulation showed close resemblance to the commercial product Contramal and compliance with USP specification. The results were explored and explained by the difference of micromeritic characteristics of the polymers and blend of drug with excipients. Insignificant effects of various factors, e.g. pH of dissolution media, ionic strength, speed of paddle were found on the drug release from Kollidon-SR matrix. The formulation followed the Higuchi kinetic model of drug release. Stability study data indicated stable character of Batch T6 after short-term stability study.


2020 ◽  
Vol 3 (3) ◽  
pp. 197-211
Author(s):  
Kuldeep H. Ramteke ◽  
Dipika E. Ghadge ◽  
Savita A. Palve ◽  
Sachin S. Gaikwad

Background: Tablets being the conventional dosage forms can be modified for providing the desired therapeutic effect to the patients. The network of matrix in the tablet allows the drug release to be slowed down considerably. Objective: The prime objective of the study was to formulate sustained release glibenclamide matrix tablets using locust bean gum and karaya gum as a matrix polymer. Methods: Tablets were formulated by optimization using 32 factorial designs by direct compression method using different drug: polymer concentrations. The dependent variables selected were % cumulative drug release (Y1) and % drug content (Y2). The independent variables are the amount of locust bean gum (X1) and karayagum (X2). Drug-polymer compatibility studies were confirmed by FTIR and DSC. The pre-compression properties of powder were assessed indicating a good flow property. The evaluation results of the tablets were found to be within the Indian Pharmacopoeial limit. In this work, the effect of diluents type and polymer type was studied on the drug release with its increase in concentration. Results: All the formulations showed retarded drug release as the concentration of the polymer was increased. Formulation F8 was selected as the best-optimized formulation with about 100.56% drug release within 12 h. Release kinetics was carried out and it was found to be zero-order release and from assay, drug content was found to be in limits. Conclusion: ANOVA analysis indicated that the studied variables affected the response variables significantly. The optimized formulation was stable. Hence, it is concluded that the Glibenclamide sustained release matrix tablet containing natural polymers were successfully formulated by using 32 factorial design.


2012 ◽  
Vol 1 (11) ◽  
pp. 376-383 ◽  
Author(s):  
M Mallikarjuna Gouda ◽  
A Ramakrishna Shabaraya ◽  
S M Shanta Kumar

Current study is to develop the colon targeted matrix tablet using the natural polysaccharide sterculia gum as carrier and model drug ciprofloxacin HCl. The matrix tablets were prepared by wet granulation technology using the various proportions of sterculia gum with carbopol 934 P, sterculia gum and ethyl cellulose polymer blends. Granules of all formulations were evaluated for rheological, post compressional properties and in vitro dissolution study in different pH buffers of pH 1.2 , pH 7.4 , pH 6.8 (saline phosphate buffer) without and with 4% rat cecal content in order to mimic GIT condition . Formulation SGC2 to SGC4 and SGE7 to SGE9 has released 13.6% to 38.9% in the initial 5h and released more amount of drug in stomach and small intestine than colon. Formulation SGC5 containing 45% of sterculia gum and 25% carbopol 934 p and Formulation SGE10 containing 45% of sterculia gum and 25% ethyl cellulose has released minimum 10.91 % to 13.04 % in the initial 5h and sustained the drug release up to 24 h and at the end of study released 75% to 79.99%. Formulations with 4% rat cecal content at the end of 24 h study drug released is 90.44% to 95.33% indicating higher amount of drug release is due to enzymatic break down of sterculia gum in the matrix tablet. Hence the above results conclude that the formulation SGC5 and SGE10 are potential in targeting the drug to colon to treat irritable bowel disease.DOI: http://dx.doi.org/10.3329/icpj.v1i11.12064 International Current Pharmaceutical Journal 2012, 1(11): 376-383


1970 ◽  
Vol 9 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Muhammad Rashedul Islam ◽  
Ishtiaq Ahmed ◽  
Mohiuddin Abdul Quadir ◽  
Md Habibur Rahman

The objective of the present study was to develop once-daily sustained-release matrix tablets of naproxen, one of the most potent non-steroidal anti-inflammatory agents used in the treatment of arthritic pain. The tablets were prepared by direct compression method using hydrophilic matrix materials like Methocel® K4M CR and Methocel® K15M CR. The tablets were subjected to measurement of thickness, diameter, weight variation, drug content, hardness and friability, the results of which were within compendial specification range. In vitro release studies were carried out by the USP basket method and were carried out at pH 7.4 buffer for ten hours. The results of dissolution studies indicated that higher polymer content in the matrix (40%) decreased the release rate of the drug as shown in formulation NMK4MF6 and NMK15MF6 (where lactose content is zero). The most successful formulations of the study, exhibited satisfactory drug release which was very close to the theoretical release profile. All the formulations exhibited diffusion-dominated drug release. Key words: Naproxen; Methocel® K4M CR; Methocel® K15M CR; Sustained release; Matrix tablets DOI: 10.3329/dujps.v9i1.7429 Dhaka Univ. J. Pharm. Sci. 9(1): 47-52 2010 (June)


Author(s):  
S. JAYA ◽  
DIVYA S.

Objective: The purpose of present study was to formulate oral sustained release matrix tablet of metoclopramide hydrochloride and to evaluate the effect of varying concentrations of hydrophobic and hydrophilic polymers on drug release. Methods: Drug–excipients compatibility studies were carried out by using Fourier transform infrared spectroscopy (FTIR). The matrix tablets were prepared by direct compression technique using Xanthan gum and ethyl cellulose alone and in combination as release retardant. Dicalcium phosphate was used as diluent. The prepared matrix tablets were evaluated for their physicochemical parameters such as weight variation, hardness, friability, content uniformity and in vitro drug release studies were performed using USP-type II (paddle) dissolution apparatus. Results: Pre and post compression parameters were evaluated and all the parameters were found within the limit. The matrix tablets prepared with xanthan gum and combination of xanthan gum and ethyl cellulose were retarded the drug release upto 12 h. Ethyl cellulose alone could not control the drug release for 12 h. The Formulation with drug to xanthan gum (1:1.5), released 97.62 % of drug in 12 h. The kinetic treatment showed that the release of drug follows zero order kinetics (R 2=0.985). Korsmeyer and Peppas equation values of n were found to be in the range of 0.40-0.56, indicating that the drug release mechanism was diffusion. Conclusion: Matrix tablet is the simple, efficient and economic method to sustain the release of metoclopramide to prevent extrapyramidal side effects.


Sign in / Sign up

Export Citation Format

Share Document