scholarly journals Probabilistic seismic hazard assessment of Nepal using multiple seismic source models

2018 ◽  
Vol 2 (4) ◽  
pp. 327-341 ◽  
Author(s):  
Md Moklesur Rahman ◽  
◽  
Ling Bai ◽  
◽  
2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Rashad Sawires ◽  
Miguel A. Santoyo ◽  
José A. Peláez ◽  
Raúl Daniel Corona Fernández

Abstract Here we present a new updated and unified Poissonian earthquake catalog for Mexico. The details about the catalog compilation, the removal of duplicate events, unifying the magnitude scales, removal of dependent events through the declustering process and its completeness analysis are presented. Earthquake and focal mechanism data have been compiled from various local, regional and international sources. Large earthquake events (MW ≥ 6.5) have been carefully revised for their epicentral locations and magnitudes from trusted publications. Different magnitude-conversion relationships, compatible with available local and regional ones, has been established to obtain unified moment magnitude estimates for the whole catalog. Completeness periods for the declustered catalog were estimated for the definition of appropriate seismic source models for the whole territory. The final unified Poissonian earthquake catalog spans from 1787 to 2018, covering a spatial extent of 13° to 33°N and 91° to 117°W. This catalog is compatible with other published catalogs providing basis for new analysis related to seismicity, seismotectonics and seismic hazard assessment in Mexico.


2020 ◽  
Vol 20 (3) ◽  
pp. 743-753
Author(s):  
Yu-Sheng Sun ◽  
Hsien-Chi Li ◽  
Ling-Yun Chang ◽  
Zheng-Kai Ye ◽  
Chien-Chih Chen

Abstract. Real-time probabilistic seismic hazard assessment (PSHA) was developed in this study in consideration of its practicability for daily life and the rate of seismic activity with time. Real-time PSHA follows the traditional PSHA framework, but the statistic occurrence rate is substituted by time-dependent seismic source probability. Over the last decade, the pattern informatics (PI) method has been developed as a time-dependent probability model of seismic source. We employed this method as a function of time-dependent seismic source probability, and we selected two major earthquakes in Taiwan as examples to explore real-time PSHA. These are the Meinong earthquake (ML 6.6) of 5 February 2016 and the Hualien earthquake (ML 6.2) of 6 February 2018. The seismic intensity maps produced by the real-time PSHA method facilitated the forecast of the maximum expected seismic intensity for the following 90 d. Compared with real ground motion data from the P-alert network, our seismic intensity forecasting maps showed considerable effectiveness. This result indicated that real-time PSHA is practicable and provides useful information that could be employed in the prevention of earthquake disasters.


2017 ◽  
Author(s):  
Zeynep Gülerce ◽  
Kadir Buğra Soyman ◽  
Barış Güner ◽  
Nuretdin Kaymakci

Abstract. This contribution provides an updated planar seismic source characterization (SSC) model to be used in the probabilistic seismic hazard assessment (PSHA) for Istanbul. It defines planar rupture systems for the four main segments of North Anatolian Fault Zone (NAFZ) that are critical for the PSHA of Istanbul: segments covering the rupture zones of 1999 Kocaeli and Düzce earthquakes, Central Marmara, and Ganos/Saros segments. In each rupture system, the source geometry is defined in terms of fault length, fault width, fault plane attitude, and segmentation points. Activity rates and the magnitude recurrence models for each rupture system are established by considering geological and geodetic constraints and are tested based on the observed seismicity that associated with the rupture system. Uncertainty in the SSC model parameters (e.g. b-value, maximum magnitude, weights of the rupture scenarios) is considered in the logic tree. To acknowledge the effect of earthquakes that are not associated with the defined rupture systems on the hazard, a background zone is introduced and the seismicity rates in the background zone are calculated using smoothed-seismicity approach. The state-of-the-art SSC model presented here is the first fully-documented and ready-to-use fault-based SSC model developed for the PSHA of Istanbul.


2017 ◽  
Vol 17 (12) ◽  
pp. 2365-2381 ◽  
Author(s):  
Zeynep Gülerce ◽  
Kadir Buğra Soyman ◽  
Barış Güner ◽  
Nuretdin Kaymakci

Abstract. This contribution provides an updated planar seismic source characterization (SSC) model to be used in the probabilistic seismic hazard assessment (PSHA) for Istanbul. It defines planar rupture systems for the four main segments of the North Anatolian fault zone (NAFZ) that are critical for the PSHA of Istanbul: segments covering the rupture zones of the 1999 Kocaeli and Düzce earthquakes, central Marmara, and Ganos/Saros segments. In each rupture system, the source geometry is defined in terms of fault length, fault width, fault plane attitude, and segmentation points. Activity rates and the magnitude recurrence models for each rupture system are established by considering geological and geodetic constraints and are tested based on the observed seismicity that is associated with the rupture system. Uncertainty in the SSC model parameters (e.g., b value, maximum magnitude, slip rate, weights of the rupture scenarios) is considered, whereas the uncertainty in the fault geometry is not included in the logic tree. To acknowledge the effect of earthquakes that are not associated with the defined rupture systems on the hazard, a background zone is introduced and the seismicity rates in the background zone are calculated using smoothed-seismicity approach. The state-of-the-art SSC model presented here is the first fully documented and ready-to-use fault-based SSC model developed for the PSHA of Istanbul.


1999 ◽  
Vol 42 (6) ◽  
Author(s):  
S. Balassanian ◽  
T. Ashirov ◽  
T. Chelidze ◽  
A. Gassanov ◽  
N. Kondorskaya ◽  
...  

The GSHAP CAUCAS test area was established under the INTAS Ct.94-1644 (Test Area for sismic Hazard Assessment in the Caucasus) and NATO ARW Ct.95-1521 (Historical and Prehistorical Earthquakes in the Caucasus), with the initial support of IASPEI, UNESCO and ILP. The high tectonic interest and seismicity rate of the whole area, the availability of abundant multi-disciplinary data and the long established tradition in hazard assessment provide a unique opportunity to test different methodologies in a common test area and attempt to establish some consensus in the scientific community. Starting from the same input data (historical and instrumental seismic catalogue, lineament and homogeneous seismic source models) six independent approaches to seismic hazard assessment have been used, ranging from pure historical deterministic to seismotectonic probabilistic and areal assessment methodologies. The results are here compared.


2019 ◽  
Author(s):  
Yu-Sheng Sun ◽  
Hsien-Chi Li ◽  
Ling-Yun Chang ◽  
Zheng-Kai Ye ◽  
Chien-Chih Chen

Abstract. The real-time Probabilistic Seismic Hazard Assessment (PSHA) is developed for considering the practicability for daily life and the rate of seismic activity with time. The real-time PSHA follows the traditional PSHA framework, but the statistic occurrence rate is substituted by time-dependent seismic source probability. Pattern Informatics method (PI) is a proper time-dependent probability model of seismic source, which have been developed over a decade. Therefore, in this research, we chose the PI method as the function of time-dependent seismic source probability and selected two big earthquakes in Taiwan, the 2016/02/05, Meinong earthquake (ML 6.6) and the 2018/02/06, Hualien earthquake (ML 6.2), as examples for the real-time PSHA. The forecasting seismic intensity maps produced by the real-time PSHA present the maximum seismic intensity for the next 90 days. Compared to real ground motion data from the P-alert network, these forecasting seismic intensity maps have considerable effectiveness in forecasting. It indicates that the real-time PSHA is practicable and can provide a useful information for the prevention of earthquake disasters.


2020 ◽  
Vol 18 (15) ◽  
pp. 6571-6605 ◽  
Author(s):  
Hadi Ghasemi ◽  
Phil Cummins ◽  
Graeme Weatherill ◽  
Chris McKee ◽  
Martyn Hazelwood ◽  
...  

Abstract Papua New Guinea (PNG) lies in a belt of intense tectonic activity that experiences high levels of seismicity. Although this seismicity poses significant risks to society, the Building Code of PNG and its underpinning seismic loading requirements have not been revised since 1982. This study aims to partially address this gap by updating the seismic zoning map on which the earthquake loading component of the building code is based. We performed a new probabilistic seismic hazard assessment for PNG using the OpenQuake software developed by the Global Earthquake Model Foundation (Pagani et al. in Seism Res Lett 85(3):692–702, 2014). Among other enhancements, for the first time together with background sources, individual fault sources are implemented to represent active major and microplate boundaries in the region to better constrain the earthquake-rate and seismic-source models. The seismic-source model also models intraslab, Wadati–Benioff zone seismicity in a more realistic way using a continuous slab volume to constrain the finite ruptures of such events. The results suggest a high level of hazard in the coastal areas of the Huon Peninsula and the New Britain–Bougainville region, and a relatively low level of hazard in the southwestern part of mainland PNG. In comparison with the seismic zonation map in the current design standard, it can be noted that the spatial distribution of seismic hazard used for building design does not match the bedrock hazard distribution of this study. In particular, the high seismic hazard of the Huon Peninsula in the revised assessment is not captured in the current building code of PNG.


2020 ◽  
Vol 10 (21) ◽  
pp. 7901
Author(s):  
Rashad Sawires ◽  
José A. Peláez ◽  
Mohamed Hamdache

A probabilistic seismic hazard assessment in terms of peak ground acceleration (PGA) and spectral acceleration (SA) values, for both 10% and 5% probability of exceedance in 50 years, has been performed for the United Arab Emirates, Qatar, and Bahrain. To do that, an updated, unified, and Poissonian earthquake catalog (since 685 to 2019) was prepared for this work. Three alternative seismic source models were considered in a designed logic-tree framework. The discrimination between the shallow and intermediate depth seismicity along the Zagros and the Makran regions was also considered in this assessment. Three alternative ground-motion attenuation models for crustal earthquakes and one additional for intermediate-depth ones have been selected and applied in this study, considering the predominant stress regime computed previously for each defined source. This assessment highlights that the maximum obtained hazard values are observed in the northeastern part of the studied region, specifically at Ras Al-Khaimah, Umm Al-Quwain, and Fujaira, being characterized by mean PGA and SA (0.2 s) pair values equal to (0.13 g, 0.30 g), (0.12 g, 0.29 g), and (0.13 g, 0.28 g), respectively, for a 475-year return period and for B/C National Earthquake Hazards Reduction Program (NEHRP) boundary site conditions. Seismic hazard deaggregation in terms of magnitude and distance was also computed for a return period of 475 years, for ten emirates and cities, and for four different spectral periods.


Sign in / Sign up

Export Citation Format

Share Document