scholarly journals On constructing single-input non-autonomous systems of full rank

For a nonlinear system of differential equations $\dot x=f(x)$, a method of constructing a system of full rank $\dot x=f(x)+g(x)u$ is studied for vector fields of the class $C^k$, $1\le k<\infty$, in the case when $f(x)\not=0$. A method for constructing a non-autonomous system of full rank is proposed in the case when the vector field $f(x)$ can vanish.

2012 ◽  
Vol 22 (08) ◽  
pp. 1250190
Author(s):  
WILLI-HANS STEEB ◽  
YORICK HARDY ◽  
IGOR TANSKI

We study autonomous systems of first order ordinary differential equations, their corresponding vector fields and the autonomous system corresponding to the vector field of the commutator of two such autonomous systems. These vector fields form a Lie algebra. From the variational equations of these autonomous systems, we form new vector fields consisting of the sum of the two vector fields. We show that these new vector fields also form a Lie algebra. Results about fixed points, first integrals and the divergence of the vector fields are also presented.


2019 ◽  
Vol 19 (12) ◽  
pp. 1950160 ◽  
Author(s):  
Jing Zhang ◽  
Jie Xu ◽  
Xuegang Yuan ◽  
Wenzheng Zhang ◽  
Datian Niu

Some significant behaviors on strongly nonlinear vibrations are examined for a thin-walled cylindrical shell composed of the classical incompressible Mooney–Rivlin material and subjected to a single radial harmonic excitation at the inner surface. First, with the aid of Donnell’s nonlinear shallow-shell theory, Lagrange’s equations and the assumption of small strains, a nonlinear system of differential equations for the large deflection vibration of a thin-walled shell is obtained. Second, based on the condensation method, the nonlinear system of differential equations is reduced to a strongly nonlinear Duffing equation with a large parameter. Finally, by the appropriate parameter transformation and modified Lindstedt–Poincar[Formula: see text] method, the response curves for the amplitude-frequency and phase-frequency relations are presented. Numerical results demonstrate that the geometrically nonlinear characteristic of the shell undergoing large vibrations shows a hardening behavior, while the nonlinearity of the hyperelastic material should weak the hardening behavior to some extent.


1991 ◽  
Vol 11 (3) ◽  
pp. 443-454 ◽  
Author(s):  
Morris W. Hirsch

AbstractFor certainCr3-dimensional cooperative or competitive vector fieldsF, whereris any positive integer, it is shown that for any nonwandering pointp, every neighborhood ofFin theCrtopology contains a vector field for whichpis periodic, and which agrees withFoutside a given neighborhood ofp. The proof is based on the existence of invariant planar surfaces throughp.


2018 ◽  
Vol 16 (1) ◽  
pp. 1204-1217
Author(s):  
Primitivo B. Acosta-Humánez ◽  
Alberto Reyes-Linero ◽  
Jorge Rodriguez-Contreras

AbstractIn this paper we study a particular parametric family of differential equations, the so-called Linear Polyanin-Zaitsev Vector Field, which has been introduced in a general case in [1] as a correction of a family presented in [2]. Linear Polyanin-Zaitsev Vector Field is transformed into a Liénard equation and, in particular, we obtain the Van Der Pol equation. We present some algebraic and qualitative results to illustrate some interactions between algebra and the qualitative theory of differential equations in this parametric family.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 723
Author(s):  
Vicente Martínez

In this paper, we use an SIRD model to analyze the evolution of the COVID-19 pandemic in Spain, caused by a new virus called SARS-CoV-2 from the coronavirus family. This model is governed by a nonlinear system of differential equations that allows us to detect trends in the pandemic and make reliable predictions of the evolution of the infection in the short term. This work shows this evolution of the infection in various changing stages throughout the period of maximum alert in Spain. It also shows a quick adaptation of the parameters that define the disease in several stages. In addition, the model confirms the effectiveness of quarantine to avoid the exponential expansion of the pandemic and reduce the number of deaths. The analysis shows good short-term predictions using the SIRD model, which are useful to influence the evolution of the epidemic and thus carry out actions that help reduce its harmful effects.


2011 ◽  
Vol 11 (4) ◽  
Author(s):  
Flaviano Battelli ◽  
Kenneth J. Palmer

AbstractIt is well-known that solutions on the stable manifold of a hyperbolic periodic solution of an autonomous system of ordinary differential equations have an asymptotic phase which has the same order of smoothness as the vector field. In this paper we show if the system depends on a parameter that, in general, the asymptotic phase loses one order of smoothness in the parameter.


Sign in / Sign up

Export Citation Format

Share Document