scholarly journals Calculation and Experimental Analysis of Integral Experiments with Fast Neutron Spectrum and Models of Sodium- and Lead-Cooled Fast Reactors based on Different Evaluated Nuclear Data Libraries

2021 ◽  
Vol 2021 (1) ◽  
pp. 71-82
Author(s):  
Olga Nikolaevna Andrianova ◽  
Yury Evgen’evich Golovko ◽  
Gennadij Mihajlovich Zherdev ◽  
Gleb Borisovich Lomakov ◽  
Eugenia Sergeevna Teplukhina
2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Martin Schulc ◽  
Michal Košťál ◽  
Evžen Novák ◽  
Jan Šimon ◽  
Luiz Leal

Abstract Oxygen belongs to the group of the most important isotopes in the nuclear data field. The aim of this paper is validate various oxygen nuclear data libraries in different scenarios with high content of oxygen. For this purpose, fast neutron spectra were measured by a stilbene scintillation detector in the region of 1–10 MeV in the three model cases involving 252Cf neutron source and light water reactor. The cases include measurements of leakage spectra using 252Cf neutron source placed in the centers of the light water and heavy water spheres of 0.30 m diameter. Following measurements were carried out inside the concrete biological shielding of the VVER-1000 mock-up simulator in the LR-0 reactor and in the dry channel located in the center of the special core placed in the LR-0 reactor. In the case of the special core, symmetric active core consisted of six standard fuel assemblies which surround the experimental dry module, where the fast neutron spectrum was measured. The measured neutron spectra were compared with MCNP6 transport code calculations in ENDF/B-VII.1, ENDF/B-VIII.0, JENDL-4.0, and IRSN 16O nuclear data evaluations. Experimental results for all cases follow similar trend. All considered libraries underestimate experimental measurement in the region of 3–4 MeV in all cases.


2021 ◽  
Vol 7 (2) ◽  
pp. 103-109
Author(s):  
Olga N. Andrianova ◽  
Yury Ye. Golovko ◽  
Gleb B. Lomakov ◽  
Yevgeniya S. Teplukhina ◽  
Gennady M. Zherdev

The paper presents the results of a comparative analysis of criticality calculations using a Monte-Carlo code with the BNAB-93 and BNAB-RF neutron group constants, as well as with evaluated neutron data files from the Russian ROSFOND evaluated nuclear data library and other evaluated nuclear data libraries (ENDF, JEFF, JENDL) from different years. A set of integral experiments on BFS critical assemblies carried out in different years at the Institute of Physics and Power Engineering (60 different critical configurations) was analyzed. The considered integral experiments are included in the database of evaluated experimental neutronic data used to justify the neutronic performance of sodium and lead cooled fast reactors, to verify codes and nuclear data as well as to estimate uncertainties in neutronic parameters due to the nuclear data uncertainties. It has been shown that the ROSFOND evaluated nuclear data library is a library that minimizes the calculation and experimental discrepancies for the considered set of integral experiments. The paper also presents the results of criticality calculations for models of sodium and lead cooled fast reactors based on different evaluated neutron data libraries and provides estimates for the uncertainty in criticality associated with nuclear data.


2018 ◽  
Vol 4 ◽  
pp. 32
Author(s):  
Juan Pablo Scotta ◽  
Gilles Noguère ◽  
Jose Ignacio Marquez Damian

The thermal scattering law (TSL) of 1H in H2O describes the interaction of the neutron with the hydrogen bound to light water. No recommended procedure exists for computing covariances of TSLs available in the international evaluated nuclear data libraries. This work presents an analytic methodology to produce such a covariance matrix-associated to the water model developed at the Atomic Center of Bariloche (Centro Atomico Bariloche, CAB, Argentina). This model is called as CAB model, it calculates the TSL of hydrogen bound to light water from molecular dynamic simulations. The performance of the obtained covariance matrix has been quantified on integral calculations at “cold” reactor conditions between 20 and 80∘ C. For UOX fuel, the uncertainty on the calculated reactivity ranges from ±71 to ±155 pcm. For MOX fuel, it ranges from ±110 to ±203 pcm.


2018 ◽  
Vol 4 ◽  
pp. 29
Author(s):  
Patrick Talou

In the last decade or so, estimating uncertainties associated with nuclear data has become an almost mandatory step in any new nuclear data evaluation. The mathematics needed to infer such estimates look deceptively simple, masking the hidden complexities due to imprecise and contradictory experimental data and natural limitations of simplified physics models. Through examples of evaluated covariance matrices for the soon-to-be-released U.S. ENDF/B-VIII.0 library, e.g., cross sections, spectrum, multiplicity, this paper discusses some uncertainty quantification methodologies in use today, their strengths, their pitfalls, and alternative approaches that have proved to be highly successful in other fields. The important issue of how to interpret and use the covariance matrices coming out of the evaluated nuclear data libraries is discussed.


Sign in / Sign up

Export Citation Format

Share Document