scholarly journals Influence of the concrete strength and the type of supports on the stress-strain state of a hyperbolic paraboloid shell footbridge structure

Author(s):  
David Cajamarca-Zuniga ◽  
Sebastian Luna

Relevance. This work is the first in a series of publications on the selection of a suitable analytical surface for implementation as a self-supporting structure for a thin shell footbridge. The study on the influence of concrete strength, live load position and support types on the stress-strain state of a hyperbolic paraboloid (hypar) shell is presented. Objective - to define the initial design parameters such as the appropriate concrete strength and the support type that generates the best structural behaviour to perform the subsequent structural design of a thin shell footbridge. Methods. The static finite element analysis was performed for 4 compressive strengths of concrete (28, 40, 80, 120 MPa) which correspond normal, high and ultra-high resistance concrete, 5 different live load arrangements and 3 different support conditions. Results. The shell model with pinned (two-hinged) supports shows the same vertical displacements as the model with fixed supports (hingeless). For the studied shell thickness, in terms of stress behaviour, the model with pinned ends is more efficient. The combination of two-hinged supports with 80 MPa concrete strength shows a better structural performance.

Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


Author(s):  
D.A. Neganov ◽  
◽  
A.E. Zorin ◽  
O.I. Kolesnikov ◽  
G.V. Nesterov ◽  
...  

The methodology of laboratory modeling of the loading of utor welded joint of the tank is presented. The methodology is based on testing of the special design sample. It allows under uniaxial tension on the typical servo-hydraulic machines to reproduce in the zone of a utor welded joint the combined action of bending and shear forces, similar to that which occurs during the operation of a vertical cylindrical tank. To assess the distribution of the stress-strain state in the proposed design of the sample under its loading, the finite element modeling was performed in the ANSYS software package. It showed the fundamental correspondence of the stress distribution in the zone of the utor node in the sample and in the real tank. The experimental studies consisted in carrying out tests for the durability of a series of 16 samples loaded with the maximum force in the cycle, causing the calculated stresses in the zone of the welded utor node in the range of 100–200 % from the maximum permissible ones. The obtained results showed that the maximum loaded zone, where the destruction of the samples occurred, is the near-seam zone of the utor welded joint on the inside of the tank. This corresponds to the statistics of the real tank failures. It is established that the developed methodology ensures the possibility of carrying out correct resource tests of the tank utor welded joints. It is also possible to vary the stress-strain state scheme within a wide range in the area of the utor welded joint by changing the design parameters of the test sample. In compliance with the regulated welding technologies and the absence of unacceptable defects in the welded joint, the utor node has a high resource, which significantly exceeding 50 years of the tank operation.


2016 ◽  
Vol 685 ◽  
pp. 186-190 ◽  
Author(s):  
Е.V. Eskina ◽  
E.G. Gromova

The paper describes the method of manufacture of profiles in cramped bending conditions using polyurethaneThe scope of studies included stress-strain state of elastic die and parent sheet, as well as the influence of the basic process parameters on characteristics of the produced items using ANSYS software.


2017 ◽  
Vol 265 ◽  
pp. 606-610 ◽  
Author(s):  
Yu.N. Loginov ◽  
S.I. Stepanov ◽  
E.V. Khanykova

The problem of stress-strain state upon compression of implant of titanium alloy with cellular architecture was formulated by means of ABAQUS software and finite element analysis. The volume of the material was segmented on the unit cells characterized by specific configuration. The boundary conditions and physical equations were stated to describe the correlation between stresses and strains. The calculations of stress values, area reduction and mean stress were performed. The increased strain rates were revealed in horizontal pore cell walls. Joint simulating of several individual unit cells was provided. Zone seeing tensile stresses were observed in the segment of radius of the unit cell. The estimation of threatening sections location of the construction was conducted.


2008 ◽  
Vol 47-50 ◽  
pp. 37-40
Author(s):  
Aleksandrs Korjakins ◽  
Sergejs Gluhihs ◽  
Andrejs Popovs ◽  
Aleksandr Tiskunov

With increasing attention being devoted to the problem of reducing service costs for a wide range of turbines and compressors, an attractive option is repair of damaged blades, instead of replacing them by new ones. A lot of different methods are used to repair blades and other parts of turbines and compressors. The processes of laser metal deposition (LMD) and direct laser forming (DLF) are modern methods used to repair blades made of titanium alloys. In the present study, the finite element analysis (FEM) has been applied to determine the stress-strain state of the repaired blades in service conditions. Different forms and sizes of the damaged zones have been analyzed. Several kinds of alloys, such as Incoloy 903, Carlson C800 and Inconel 718, appropriate for the LMD and DLF methods, have been utilized in repairing the blades. Two kinds of blades, with and without cooling hollows, have been examined. Lifetime of the repaired turbine has been evaluated by comparing the results obtained from the modal and stress-strain state analyses of the repaired and original parts. The results allow evaluating influence of sizes and forms of the damaged zones, as well as choice of the alloys applied, on lifetime of the repaired blades.


Author(s):  
Yifang Sun ◽  
А. А. Вендин

Fitting joints are widely used in aircraft structures, and they are responsible for the interconnection of important components. The stress-strain state analysis of the fitting joint must be carried out before the performance analysis of the fitting joint. With the help of 3D modeling software (CATIA) and finite element analysis software (ANSYS), the stress-strain state of each component in the fitting joint of outer wing section was calculated in this paper. In the CATIA, the solid model is simplified and segmented according to the size of the cross section and the height of the center of gravity of the model. In the ANSYS, the beam elements are used to replace the simplified segmented model to obtain the internal force distribution of the solid model and to determine the magnitude and change law of the stress applied to the end of the solid model. When calculating the force transmitted by the fastener, the pre-tightening force of the bolt and the interaction between the surfaces of the component are taken into account, so as to simulate the real force situation well. Therefore, it is a very feasible method to use the CATIA and ANSYS to obtain the stress-strain state of components in the fitting joint of center wing section and outer wing section.The results show that under the working conditions of the fitting joint (130Mpa), the fitting of outer wing section with center section has a maximum stress of 245.79Mpa and a maximum strain of 0.0035, the stringer of outer wing section has a maximum stress of 293.17Mpa and a maximum strain of 0.0047, the lower panel of outer wing section has a maximum stress of 289.53Mpa and a maximum strain of 0.0042. The connecting bolts (M8 and M6) have a maximum stress of 686.81Mpa and a maximum strain of 0.0063, which meets the design requirements. In addition, according to the analysis results of the stress-strain state of the fitting joint of outer wing section, the force distribution of the bolts in the fitting joint of outer wing section with center section was obtained in this paper. It has been confirmed that due to the different positions and force areas of the bolts, the force distribution between rows of bolts is uneven, and the first row of bolts has a more force.


2020 ◽  
pp. paper13-1-paper13-12
Author(s):  
Alexey Semenov ◽  
Iurii Zgoda

The paper describes a mathematical model of changes in the geometry of thin-shell structures for visualization of the analysis data on their stress-strain state (SSS). Based on this mathematical model, a visualization module for shell SSS visualization using VR and AR technologies was developed. The interactive visualization environment Unity 2019.3 and C# programming language were used. The interactive visualization module makes a 3D image of a shell structure and visualizes the SSS either through heat maps over the shell or through the changes in the shell geometry on the basis of the shell type, its geometric characteristics, and SSS analysis data (transferred to the visualization module by means of a JSON file). While working on the visualization module, the authors developed a system of components that makes it possible to visualize any 3D surface with coordinate axes (including numbers with a pitch determined automatically), visualize heat maps with a graduated scale, visualize a mesh over the graph to improve the perception of the surface deformations. The middle surface can also be deformed on the basis of SSS analysis data. This solution increases the efficiency of the work of specialists in civil engineering and architecture and can be used when training specialists in courses on thin-shell structures and procedural geometry.


2020 ◽  
pp. 32-44
Author(s):  
Liudmyla Skochko ◽  
Artem Shabaltun

The influence of the order of construction of houses on the formation of the stress-strain state of the system "foundation-foundation-above-ground structures" is investigated For this purpose, several options for setting tasks for the phased construction of multi-section building sections are considered. With this in mind, it should be noted that the construction of each subsequent section has an impact on the built entirely or partially adjacent section. That is why this effect should be investigated to predict how serious this impact may be, and to draw appropriate constructive decisions. Thus, the main objectives of the study are: Creation of SEM without taking into account the stages of construction of the house; Calculation of a house with a phased loading of 5 floors. Taking into account changes in the order of construction of sections; Formation of SEM taking into account the sequence of erection of sections without including the sequence of erection of floors within the boundaries of the current section; Research of the impact of the calculation of sections of a multi-section building without and taking into account the summary of subsequent sections. The research of the impact of the sequence of construction and installation of the object will allow us to assess the stress-strain scheme at all stages of construction, so changes in the behavior of the scheme will be recorded at all stages of construction specified by the designers. To do this, the change in the stress-strain state (VAT) of the system "foundation - foundations - above-ground structures" must be modeled with different options for stages of construction, taking into account the real parameters of the soil base and so on. The interaction of piles in different zones of sections, the work of grids in the foundations of high-rise buildings are considered. The research was carried out with the help of numerical modeling of the system "foundation - foundations - aboveground constructions". The redistribution of forces in the piles depending on the formulation of problems on the stages of construction of sections and design parameters (location of piles in characteristic zones, the influence of the stiffness of the aboveground part on the redistribution of forces). Characteristic zones in the foundation are distinguished: they are central, lateral, angular and especially at the joints of adjacent sections. The redistribution of efforts between piles and a grid is revealed.  


2021 ◽  
Vol 266 ◽  
pp. 01022
Author(s):  
Z.A. Besheryan ◽  
I.F. Kantemirov

The development of Russian fuel and energy complex in the short term is connected with the development of new hydrocarbon field in the permafrost zone and the need to build Arctic pipelines north of the 60th parallel. The ground-based structural scheme of pipeline laying is the most optimal while constructing trunk pipelines in permafrost areas in the Arctic and subarctic latitudes. The actual operating conditions of these systems are insufficiently studied. The above-ground pipeline in permafrost is in an complex stress-strain state. This study presents the results of the assessment of the stress-strain state of linearly extended above-ground pipelines at different compensation sections (triangular compensator; trapezoidal compensator; U-shaped compensator) under actual operating conditions. Using the finite element method on mathematical models, the dependences of the transverse displacements of the pipeline on movable supports and stresses arising in dangerous sections of the typical pipeline section during self-compensation of deformations on the variable design parameters of the system for various load combinations were established (the simulation was carried out in the ANSYS software package).


Sign in / Sign up

Export Citation Format

Share Document