Laborer dies when backed over by a tack truck in residential roadway construction work zone - North Carolina.

2007 ◽  
2003 ◽  
Author(s):  
Christopher Huebschman ◽  
Camilo Garcia ◽  
Darcy Bullock

Author(s):  
Karen K. Dixon ◽  
Joseph E. Hummer ◽  
Ann R. Lorscheider

Work zone capacity values for rural and urban freeways without continuous frontage roads were defined and determined. Data were collected using Nu-Metrics counters and classifiers at 24 work zones in North Carolina. The research included analysis of speed-flow behavior, evaluation of work zone sites based on lane configuration and site location, and determination of the location within the work zone where capacity is lowest. It was shown that the intensity of work activity and the type of study site (rural or urban) strongly affected work zone capacity. The data suggested that the location where capacity is reached is also variable based on the intensity of work. For heavy work in a two-lane to one-lane work zone configuration, the capacity values proposed at the active work area are approximately 1,200 vehicles per hour per lane for rural sites and 1,500 vehicles per hour per lane for urban sites. It is recommended that two distinct volumes be used when queue behavior in a freeway work zone is analyzed. The collapse from uninterrupted flow (designated work zone capacity) and the lower queue-discharge volume both should be considered.


Author(s):  
Ali H. Mashhadi ◽  
Mohammad Farhadmanesh ◽  
Abbas Rashidi ◽  
Nikola Marković

Road reconstruction and the resulting work zones are considered as a major source of traffic congestion and delays on freeways. The roadway capacity is decreased as a result of a reduced number of traffic lanes, narrower lanes, and work zone speed limits. Accurate prediction of construction work zone capacity helps traffic engineers to have a better estimation of the traffic flow characteristics. To this end, multiple methodologies have been developed to quantify the impacts of work zones on traffic flow. This paper presents a critical review of the three types of approaches to estimating construction work zone capacities, including parametric, non-parametric, and simulation. Then the most commonly considered factors and their frequency are presented. It also performs a detailed review of the approaches, their objectives, and weaknesses. Lastly, it provides recommendations for future research. The presented work could help researchers in the area of work zone capacity estimation by presenting all the previous methodologies in one place.


Sign in / Sign up

Export Citation Format

Share Document