A SURVEY ON VEHICULAR AD HOC NETWORKS ROUTING PROTOCOLS

Author(s):  
ABHILASH KUMAR M ◽  
RAMA MOHAN REDDY A ◽  
◽  
Author(s):  
Indrani Das ◽  
Sanjoy Das

Geocasting is a subset of conventional multicasting problem. Geocasting means to deliver a message or data to a specific geographical area. Routing refers to the activities necessary to route a message in its travel from source to the destination node. The routing of a message is very important and relatively difficult problems in the context of Ad-hoc Networks because nodes are moving very fast, network load or traffic patterns, and topology of the network is dynamical changes with time. In this chapter, different geocast routing mechanisms used in both Mobile Ad-hoc Networks and Vehicular Ad-hoc Networks. The authors have shown a strong and in-depth analysis of the strengths and weaknesses of each protocol. For delivering geocast message, both the source and destination nodes use location information. The nodes determine their locations by using the Global Positioning System (GPS). They have presented a comprehensive comparative analysis of existing geocast routing protocols and proposed future direction in designing a new routing protocol addressing the problem.


2015 ◽  
Vol 764-765 ◽  
pp. 817-821
Author(s):  
Ing Chau Chang ◽  
Yuan Fen Wang ◽  
Chien Hsun Li ◽  
Cheng Fu Chou

This paper adopts a two-mode intersection graph-based routing protocol to support efficient packet forwarding for both dense and sparse vehicular ad hoc networks (VANET). We first create an intersection graph (IG) consisting of all connected road segments, which densities are high enough. Hence, the source vehicle leverages the proposed IG/IG bypass mode to greedily forward unicast packets to the boundary intersection via the least cost path of current IG. We then perform the IG-Ferry mode to spray a limited number of packet copies via relay vehicles to reach the boundary intersection of another IG where the destination vehicle resides. NS2 simulations are conducted to show that the two-mode IG/IG-Ferry outperforms well-known VANET routing protocols, in terms of average packet delivery ratios and end-to-end transmission delays.


Author(s):  
Christos Bouras ◽  
Vaggelis Kapoulas ◽  
Enea Tsanai

Vehicular Ad Hoc Networks (VANETs) are considered as a special case of mobile Ad Hoc Networks (MANETs) and are recently gaining a great attention from the research community. The need for improved road safety, traffic efficiency and direct communication along with the great complexity in routing, makes VANETs a highly challenging field. Routing in VANETs has to adapt to special characteristics such as high speed and road pattern movement as well as high linkage break probability. In this work, the authors show that traditional MANET routing protocols cannot efficiently handle the challenges in a VANET environment and thus need further modifications. For this reason, they propose and implement an enhancement mechanism, applied to the GPSR routing protocol that adapts to the needs of a VANET. The proposed mechanism's performance is evaluated through simulation sets for urban and highway scenarios and compared to the performance of the most common MANET routing protocols adopted in VANETs. The proposed enhancement is shown to be considerably beneficial and it significantly outperforms the rest of the tested routing protocols for almost every topology setting.


Sign in / Sign up

Export Citation Format

Share Document