scholarly journals Analysis of Wind Power Grid Connection Based on MATLAB

2021 ◽  
Vol 267 ◽  
pp. 01050
Author(s):  
Yuyang Mao ◽  
Xiaolong Wang ◽  
Zhiqiang Wang

As the proportion of new energy sources such as wind power and photovoltaics in the power system continues to increase, their volatility and intermittentness have also brought new challenges to the stable operation of the power grid. The impact of the decline in power quality caused by a large number of wind power grids has become increasingly significant. This article analyzes and summarizes the development, status quo of wind power and the current problems of a large number of wind power grid connections. First, it briefly describes the history of wind power and the current development of wind power, and uses MATLAB to establish models of variable speed wind turbines connected to the grid. The models are used to analyze the output characteristics of wind turbines under normal operating conditions and faulty operating conditions. Finally, the impact of a large number of wind power grids on the power system is studied.

2014 ◽  
Vol 950 ◽  
pp. 314-320 ◽  
Author(s):  
Jun Jia ◽  
Xin Xin Hu ◽  
Ping Ping Han ◽  
Yan Ping Hu

With the scale of wind farm continuously increasing, when grid fault, the influences of the wind turbines connected to the grid on the stability of the power grid can never be ignored. Therefore, there are higher standards of the wind turbines’ abilities of fault ride-through (FRT) and producing reactive power. This paper studies the direct-drive wind power system, and the main point is the fault ride-through (FRT) of the permanent magnetic synchronous generator (PMSG) with Chopper. By establishing the dynamic model of PMSG under the environment of DigSILENT, this paper simulates the fault ride-through (FRT) of the direct-drive wind power system connecting into power grid. During the research, we focus on the stability of voltage about the Chopper to the DC bus under faults. What’s more, in this paper, we analysis the data about how the Chopper help the DC bus to improve its stability. The simulation results show that: when there is a fault on the point of common coupling, the permanent magnetic synchronous generator has the capability of fault ride-through (FRT). Especially when there is a voltage dip on the grid side, the permanent magnetic synchronous generator could produce reactive power for power grid, effectively preventing the system voltage from declining seriously, so as to improve the system stability under faults.


2021 ◽  
Vol 288 ◽  
pp. 01003
Author(s):  
Saken Koyshybaevich Sheryazov ◽  
Sultanbek Sansyzbaevich Issenov ◽  
Ruslan Maratbekovich Iskakov ◽  
Argyn Bauyrzhanuly Kaidar

The paper describes special aspects of using the wind power plants (wind turbines) in the power grid. The paper provides the classification and schematic presentation of AC wind turbines, analyzes the role, place and performance of wind power plants in Smart Grid systems with a large share of renewable energy sources. The authors also reviews a detailed analysis of existing AC wind turbines in this paper. Recommendations are given for how to enhance the wind power plants in smart grids in terms of reliability, and introduce the hardware used in the generation, conversion and interface systems into the existing power grid. After the wind power plants had been put online, the relevance of the Smart Grid concept for existing power grids was obvious. The execution of such projects is assumed to be financially costly, requires careful study, and development of flexible algorithms, but in some cases this may be the only approach. The analysis of using wind turbines shows that the structural configuration of wind power plants can be based on the principles known in the power engineering. The approaches may differ, not fundamentally, but in engineering considerations. it is necessary to point out that the method of controlling dual-power machines is quite comprehensive so that their wide use will face operational problems caused by the lack of highly professional specialists in electric drives. Therefore, it seems advisable to use square-cage asynchronous generators in wide applications. The paper shows that as the renewable energy sources are largely used in power grids, there is an issue of maintaining the power generation at a required level considering the variability of incoming wind energy. This results in the malfunctions in the operation of relay protection devices and emergency control automatics (RP and ECA), and the complicated control. Also, the standards of the CIS countries and regulatory documents miss the requirements for the wind turbine protections, taking into account their specialty causing the inefficient standard protective logic, which does not work correctly in a number of abnormal and emergency operating modes, and especially Smart Grid in power grids.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tianyi Zhang ◽  
Haifeng Wang

With the continuous growth in the amount of wind power accessed by the AC grid, the impact of the grid connection of wind-power generators with the power system has gradually increased. In this study, the subsynchronous oscillation of a synchronous generator (SG) shaft caused by the integration of direct-drive permanent-magnet synchronous generators (PMSGs) was investigated. The mechanism governing the effect of the connection strength between the PMSG and AC power system on the stability of the generator shaft system was analyzed based on the complex torque coefficient method. When the connection strength between the PMSG and AC power system weakens, the same voltage variation that occurs at the point of common coupling of the PMSG stimulates more intense power fluctuations in the PMSG, and the electrical damping injected by the PMSG into the SG increases considerably. This may cause the oscillation mode dominated by the generator shaft system to move to the right half of the complex plane, thereby reducing the stability of the generator shaft system. In addition, the evaluation process of the influence of the PMSG on the SG shaft system was summarized, and the proposed method can determine the stability of the AC power system after the integration of the PMSG. Finally, the effectiveness of the proposed method was validated via study cases, and conclusions were drawn. This method is expected to serve as a useful tool for the risk assessment of subsynchronous oscillations in wind farms.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 156 ◽  
Author(s):  
Saba Gul ◽  
Azhar Ul Haq ◽  
Marium Jalal ◽  
Almas Anjum ◽  
Ihsan Ullah Khalil

Fault analysis in photovoltaic (PV) arrays is considered important for improving the safety and efficiency of a PV system. Faults do not only reduce efficiency but are also detrimental to the life span of a system. Output can be greatly affected by PV technology, configuration, and other operating conditions. Thus, it is important to consider the impact of different PV configurations and materials for thorough analysis of faults. This paper presents a detailed investigation of faults including non-uniform shading, open circuit and short circuit in different PV interconnections including Series-Parallel (SP), Honey-Comb (HC) and Total-cross-Tied (TCT). A special case of multiple faults in PV array under non-uniform irradiance is also investigated to analyze their combined impact on considered different PV interconnections. In order to be more comprehensive, we have considered monocrystalline and thin-film PV to analyze faults and their impact on power grids. Simulations are conducted in MATLAB/Simulink, and the obtained results in terms of power(P)–voltage(V) curve are compared and discussed. It is found that utilization of thin-film PV technology with appropriated PV interconnections can minimize the impact of faults on a power grid with improved performance of the system.


2019 ◽  
Vol 79 ◽  
pp. 03017
Author(s):  
Mingyu Dong ◽  
Dezhi Li ◽  
Fenkai Chen ◽  
Meiyan Wang ◽  
Rongjun Chen ◽  
...  

With the development of smart power distribution technology in the future, a large range of power supply load (such as distributed wind power generation) will appear on the power receiving end. When distributed wind power is connected to the power grid on a large scale, it will have a certain impact on the safe and stable operation of the power grid. However, if the wind power output characteristics can be analyzed and the wind power output is properly regulated, the one-way flow of power from the distribution network to the user side will be broken, so that the future "network-load" has dual interaction characteristics based on response and substantial power exchange.


2012 ◽  
Vol 499 ◽  
pp. 400-404
Author(s):  
Jian Hong Zheng ◽  
Jie Feng Li ◽  
Yu Zhi Gao

With the rapid development of the wind power, it is no longer an isolated power system and gradually incorporated in the local power grid. However, as the increasing proportion of the installed wind power capacity in the power grid, the affection of the wind turbine to the region power system is getting heavier, which inevitably bring some new problems to the power system. The low voltage ride through (LVRT) is the direct embodiment of the power quality. In this paper, we fist analyze the impact of the voltage drop on the double-fed wind turbine. Then, a LVRT control method is proposed based on hardware realization. The detailed explanation of the proposed control method is given at last.


2014 ◽  
Vol 651-653 ◽  
pp. 1028-1032
Author(s):  
Cun Guo Liu ◽  
Yu Peng Wang ◽  
Qing Ye ◽  
Tao Liu ◽  
Bai Chao Shu ◽  
...  

power quality problems such as high line loss, low voltage exist commonly in rural power grid of China due to few supply points, long power transmission and distribution line. Huge fund is required to increase the quantity of supply points in rural power grid; installation of var compensators on line nodes could not solve power quality problems on the whole line. At the same time, as distributed power supply, wind power is also restricted by peak regulation, insufficient line output capacity and other factors in large scale centralized grid-connected output, wind curtailment often occurs. In order to solve the above-mentioned two problems simultaneously, electric power of wind farm may be output via nearby rural power grid line, thus not only utilization rate of wind power is increased, but also power quality of rural power grid is improved.This paper takes an example of a district in Fuxin City, summarizes power quality change data of relevant rural power grid before and after the distributed grid connection of wind farm is made, the analysis shows that distributed grid connection of wind power could improve load flow distribution of the power system, reduce system transmission loss in this district obviously, increase economical efficiency of the system operation effectively. At the same time, effectiveness of static var generator in substation to overcome the impact of such grid connection mode on power grid is verified.


2014 ◽  
Vol 986-987 ◽  
pp. 606-610
Author(s):  
Zhi Jie Wang ◽  
San Ming Liu ◽  
Pan Xi ◽  
Ze Yang Pei ◽  
Xin Xia Su ◽  
...  

Setting up a practical power system containing wind farm small disturbance stability mathematical model, and the linearized equation of wind turbines and original equations of linear system, power system containing wind turbines augmented state formation matrix, turn the inverse iteration with PSASP software Rayleigh (Rayleigh quotient iterative algorithm and sparse matrix technique for large state matrix eigenvalues. In this paper, the Inner Mongolia power grid, wind power access to power system oscillation mode and the influence of the oscillation characteristics and meet the requirements of small disturbance stability of wind scale and operation control scheme. The influence of the wind farm is proposed for power system damping characteristics will not greater than the same capacity of synchronous generator's point of view.


2014 ◽  
Vol 1070-1072 ◽  
pp. 258-263
Author(s):  
Hua Bo Shi ◽  
Zhi Chen ◽  
Gan Li ◽  
Bo Zhou

Wind energy is clean and renewable energy with rich resources. As one of the most promising green energy, wind power has become an important part of the electricity supply. But there are still many technical problems to be solved related to wind power generation and integration, because it may have significant impact on safe and stable operation of the power grid. Therefore, the doubly-fed wind generator and direct-driven permanent-magnet wind power generator are studied. Their models are built in PSCAD/EMTDC for electromagnetic transient simulation, in order to study the characteristics of their short circuit fault current, as well as the impact on the relay protection of the wind power system. The research outcomes provide a reference and basis to wind power failure characteristics research.


2014 ◽  
Vol 978 ◽  
pp. 67-71 ◽  
Author(s):  
Pei Lin Li

With the popularization and application of electric vehicles, charging and discharging load will bring new challenges to safe and stable operation of the power grids. Charging and discharging control is becoming an important power system operation strategy as well as generation dispatch. A volume of research has been devoted to charging control (including vehicle-to-grid, so-called V2G) which can not only alleviate the adverse effects of charging load but also support the grid operation such as leveling the load and promoting the integration of renewable generation. This paper analyzes the impact of electric vehicles charging and discharging on the power system.


Sign in / Sign up

Export Citation Format

Share Document