scholarly journals An Online Stream Monitoring Algorithm for Fraud Detection in the Transport of Goods

Author(s):  
Paweł M. Białoń ◽  

The process of monitoring vehicles used in road transports plays an important role in detecting fraud committed by drivers. Algorithm designers face a number of challenges, including large number of vehicles monitored, demands related to online calculations, and ability to easily explain fraud alarms triggered to supervisors who make final decisions about actions to be taken. In this paper, we propose rather general, lightweight stream, online heuristics. The vehicle’s position is periodically controlled by a GNSS device. The algorithm detects potential illegal activities along the route between the origin and the destination. Anomalies in the vehicle’s trajectory are detected, based on a multi-resolution analysis of the economy of routes. The economy metric is easily understood and verifiable by controllers. The solution is also capable of identifying clearly suspicious trajectories that popular geofencing approaches would overlook. The scale on which the solution may be adopted is obtained thanks to the stream – like nature of the algorithm: essentially, the resources used do not increase along with the size of the input stream (the number of GNSS frames generated for the vehicle). An experiment illustrating the algorithm’s viability is presented as well.

2021 ◽  
Vol 65 (4) ◽  
pp. 953-998
Author(s):  
Mark A. Iwen ◽  
Felix Krahmer ◽  
Sara Krause-Solberg ◽  
Johannes Maly

AbstractThis paper studies the problem of recovering a signal from one-bit compressed sensing measurements under a manifold model; that is, assuming that the signal lies on or near a manifold of low intrinsic dimension. We provide a convex recovery method based on the Geometric Multi-Resolution Analysis and prove recovery guarantees with a near-optimal scaling in the intrinsic manifold dimension. Our method is the first tractable algorithm with such guarantees for this setting. The results are complemented by numerical experiments confirming the validity of our approach.


2021 ◽  
pp. 002029402110130
Author(s):  
Guan Chen ◽  
Zhiren Zhu ◽  
Jun Hu

This study proposed a simple and effective response spectrum-compatible ground motions simulation method to mitigate the scarcity of ground motions on seismic hazard analysis base on wavelet-based multi-resolution analysis. The feasibility of the proposed method is illustrated with two recorded ground motions in El Mayor-Cucapah earthquake. The results show that the proposed method enriches the ground motions exponentially. The simulated ground motions agree well with the attenuation characteristics of seismic ground motion without modulating process. Moreover, the pseudo-acceleration response spectrum error between the recorded ground motion and the average of the simulated ground motions is 5.2%, which fulfills the requirement prescribed in Eurocode 8 for artificially simulated ground motions. Besides, the cumulative power spectra between the simulated and recorded ground motions agree well on both high- and low-frequency regions. Therefore, the proposed method offers a feasible alternative in enriching response spectrum-compatible ground motions, especially on the regions with insufficient ground motions.


Sign in / Sign up

Export Citation Format

Share Document