scholarly journals Connected domination number of cartesian product graphs of Cayley graphs with arithmetic graphs

2020 ◽  
Vol S (1) ◽  
pp. 48-51
Author(s):  
Uma Maheswari S. ◽  
Siva Parvathi M. ◽  
Bhatathi B. ◽  
Venkata Anusha M.
10.37236/2535 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
K. Choudhary ◽  
S. Margulies ◽  
I. V. Hicks

A dominating set $D$ for a graph $G$ is a subset of $V(G)$ such that any vertex not in $D$ has at least one neighbor in $D$. The domination number $\gamma(G)$ is the size of a minimum dominating set in G. Vizing's conjecture from 1968 states that for the Cartesian product of graphs $G$ and $H$, $\gamma(G)\gamma(H) \leq \gamma(G \Box H)$, and Clark and Suen (2000) proved that $\gamma(G)\gamma(H) \leq 2 \gamma(G \Box H)$. In this paper, we modify the approach of Clark and Suen to prove a variety of similar bounds related to total and paired domination, and also extend these bounds to the $n$-Cartesian product of graphs $A^1$ through $A^n$.


2019 ◽  
Vol 17 (1) ◽  
pp. 1269-1280 ◽  
Author(s):  
Csilla Bujtás ◽  
Pakanun Dokyeesun ◽  
Vesna Iršič ◽  
Sandi Klavžar

Abstract The connected domination game on a graph G is played by Dominator and Staller according to the rules of the standard domination game with the additional requirement that at each stage of the game the selected vertices induce a connected subgraph of G. If Dominator starts the game and both players play optimally, then the number of vertices selected during the game is the connected game domination number of G. Here this invariant is studied on Cartesian product graphs. A general upper bound is proved and demonstrated to be sharp on Cartesian products of stars with paths or cycles. The connected game domination number is determined for Cartesian products of P3 with arbitrary paths or cycles, as well as for Cartesian products of an arbitrary graph with Kk for the cases when k is relatively large. A monotonicity theorem is proved for products with one complete factor. A sharp general lower bound on the connected game domination number of Cartesian products is also established.


Author(s):  
J. Maria Regila Baby ◽  
K. Uma Samundesvari

A total dominating set [Formula: see text] is said to be a complete cototal dominating set if [Formula: see text] has no isolated nodes and it is represented by [Formula: see text]. The complete cototal domination number, represented by [Formula: see text], is the minimum cardinality of a [Formula: see text] set of [Formula: see text]. In this paper, the bounds for complete cototal domination number of Cartesian product graphs and complement graphs are determined.


2013 ◽  
Vol 7 (2) ◽  
pp. 262-274 ◽  
Author(s):  
Yero González ◽  
Juan Rodríguez-Velázquez

A map f : V ? {0, 1, 2} is a Roman dominating function for G if for every vertex v with f(v) = 0, there exists a vertex u, adjacent to v, with f(u) = 2. The weight of a Roman dominating function is f(V ) = ?u?v f(u). The minimum weight of a Roman dominating function on G is the Roman domination number of G. In this article we study the Roman domination number of Cartesian product graphs and strong product graphs.


10.37236/160 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Daniel Král' ◽  
Douglas B. West

Let ${\cal G}$ be a class of graphs. A $d$-fold grid over ${\cal G}$ is a graph obtained from a $d$-dimensional rectangular grid of vertices by placing a graph from ${\cal G}$ on each of the lines parallel to one of the axes. Thus each vertex belongs to $d$ of these subgraphs. The class of $d$-fold grids over ${\cal G}$ is denoted by ${\cal G}^d$. Let $f({\cal G};d)=\max_{G\in{\cal G}^d}\chi(G)$. If each graph in ${\cal G}$ is $k$-colorable, then $f({\cal G};d)\le k^d$. We show that this bound is best possible by proving that $f({\cal G};d)=k^d$ when ${\cal G}$ is the class of all $k$-colorable graphs. We also show that $f({\cal G};d)\ge{\left\lfloor\sqrt{{d\over 6\log d}}\right\rfloor}$ when ${\cal G}$ is the class of graphs with at most one edge, and $f({\cal G};d)\ge {\left\lfloor{d\over 6\log d}\right\rfloor}$ when ${\cal G}$ is the class of graphs with maximum degree $1$.


Sign in / Sign up

Export Citation Format

Share Document