scholarly journals Dermal fibroblasts: the terminology, heterogeneity of subpopulations and common properties

Morphologia ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 108-114
Author(s):  
I. V. Tverdokhlib ◽  
Yu. V. Silkina

Dermal fibroblasts are a dynamic and diverse population of cells whose functions in skin in many respects remain unknown. Normal adult human skin contains at least three distinct subpopulations of fibroblasts, which occupy unique niches in the dermis. Fibroblasts from each of these niches exhibit distinctive differences when cultured separately. Specific differences in fibroblast histophysiology are evident in papillary dermal fibroblasts, which reside in the superficial dermis, and reticular fibroblasts, which reside in the deep dermis. Both of these subpopulations of fibroblasts differ from the fibroblasts that are associated with hair follicles. Fibroblasts engage in fibroblast-epidermal interactions during hair development and in interfollicular regions of skin. They also play an important role in cutaneous structural transformations.

2014 ◽  
Vol 1840 (8) ◽  
pp. 2635-2642 ◽  
Author(s):  
Andreas A. Armatas ◽  
Harris Pratsinis ◽  
Eleni Mavrogonatou ◽  
Maria T. Angelopoulou ◽  
Anastasios Kouroumalis ◽  
...  

1980 ◽  
Vol 7 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Hirokazu Yasuno ◽  
Motoaki Maeda ◽  
Michiko Sato ◽  
Akifumi Nishimura ◽  
Chika Shimizu ◽  
...  

2020 ◽  
Vol 94 (22) ◽  
Author(s):  
Megan G. Lloyd ◽  
Nicholas A. Smith ◽  
Michael Tighe ◽  
Kelsey L. Travis ◽  
Dongmei Liu ◽  
...  

ABSTRACT The herpesviruses varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) are endemic to humans. VZV causes varicella (chicken pox) and herpes zoster (shingles), while HCMV causes serious disease in immunocompromised patients and neonates. More effective, less toxic antivirals are needed, necessitating better models to study these viruses and evaluate antivirals. Previously, VZV and HCMV models used fetal tissue; here, we developed an adult human skin model to study VZV and HCMV in culture and in vivo. While VZV is known to grow in skin, it was unknown whether skin could support an HCMV infection. We used TB40/E HCMV and POka VZV strains to evaluate virus tropism in skin organ culture (SOC) and skin xenograft mouse models. Adult human skin from reduction mammoplasties was prepared for culture on NetWells or mouse implantation. In SOC, VZV infected the epidermis and HCMV infected the dermis. Specifically, HCMV infected fibroblasts, endothelial cells, and hematopoietic cells, with some infected cells able to transfer infection. VZV and HCMV mouse models were developed by subcutaneous transplantation of skin into SCID/beige or athymic nude mice at 2 independent sites. Viruses were inoculated directly into one xenograft, and widespread infection was observed for VZV and HCMV. Notably, we detected VZV- and HCMV-infected cells in the contralateral, uninoculated xenografts, suggesting dissemination from infected xenografts occurred. For the first time, we showed HCMV successfully grows in adult human skin, as does VZV. Thus, this novel system may provide a much-needed preclinical small-animal model for HCMV and VZV and, potentially, other human-restricted viruses. IMPORTANCE Varicella-zoster virus and human cytomegalovirus infect a majority of the global population. While they often cause mild disease, serious illness and complications can arise. Unfortunately, there are few effective drugs to treat these viruses, and many are toxic. To complicate this, these viruses are restricted to replication in human cells and tissues, making them difficult to study in traditional animal models. Current models rely heavily on fetal tissues, can be prohibitively expensive, and are often complicated to generate. While fetal tissue models provide helpful insights, it is necessary to study human viruses in human tissue systems to fully understand these viruses and adequately evaluate novel antivirals. Adult human skin is an appropriate model for these viruses because many target cells are present, including basal keratinocytes, fibroblasts, dendritic cells, and lymphocytes. Skin models, in culture and xenografts in immunodeficient mice, have potential for research on viral pathogenesis, tissue tropism, dissemination, and therapy.


10.4081/808 ◽  
2009 ◽  
Vol 47 (1) ◽  
pp. 63 ◽  
Author(s):  
MA Croce ◽  
F Boraldi ◽  
D Quaglino ◽  
R Tiozzo ◽  
I Pasquali-Ronchetti

Sign in / Sign up

Export Citation Format

Share Document