epithelial growth
Recently Published Documents


TOTAL DOCUMENTS

354
(FIVE YEARS 47)

H-INDEX

41
(FIVE YEARS 5)

2021 ◽  
Vol 4 (3) ◽  
pp. 115-118
Author(s):  
Sphoorthi Basavannaiah

Inverted papilloma is a benign epithelial growth arising from the underlying stroma of the nasal cavity and paranasal sinuses. The pathogenesis of this lesion uptil date remains unclear. The tumor is known for its local invasiveness, rapid recurrence and link with malignancy. The recurrence rate of this tumor is usually too high that represents residual disease in most of the cases. Hence, it is mandate that the patient keeps a proper follow up on long term concerns. Here is one such patient, whose nasal mass seemed Antrochoanal polyp clinically but ended up as Inverted papilloma histopathologically.


Development ◽  
2021 ◽  
Author(s):  
Adam W. Olson ◽  
Vien Le ◽  
Jinhui Wang ◽  
Alex Hiroto ◽  
Won Kyung Kim ◽  
...  

Stromal androgen-receptor (AR) action is essential for prostate development, morphogenesis, and regeneration. However, mechanisms underlying how stromal AR maintains the cell niche in support of pubertal prostatic epithelial growth are unknown. Here, using advanced mouse genetic tools, we demonstrate that selective deletion of stromal AR expression in prepubescent Shh responsive Gli1-expressing cells significantly impedes pubertal prostate epithelial growth and development. Single-cell transcriptomic analyses showed that AR loss in these prepubescent Gli1-expressing cells dysregulates androgen-signaling initiated stromal-epithelial paracrine interactions, leading to growth retardation of pubertal prostate epithelia and significant development defects. Specifically, AR loss elevates Shh-signaling activation in both prostatic stromal and adjacent epithelial cells, directly inhibiting prostatic epithelial growth. Single-cell trajectory analyses further identified aberrant differentiation fates of prostatic epithelial cells directly altered by stromal AR deletion. In vivo recombination of AR-deficient stromal Gli1-lineage cells with wild-type prostatic epithelial cells failed to develop normal prostatic epithelia. These data demonstrate novel mechanisms underlying how stromal AR-signaling facilitates Shh-mediated cell niches in pubertal prostatic epithelial growth and development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peter Lindquist ◽  
Jakob S. Madsen ◽  
Hans Bräuner-Osborne ◽  
Mette M. Rosenkilde ◽  
Alexander S. Hauser

Strong efforts have been placed on understanding the physiological roles and therapeutic potential of the proglucagon peptide hormones including glucagon, GLP-1 and GLP-2. However, little is known about the extent and magnitude of variability in the amino acid composition of the proglucagon precursor and its mature peptides. Here, we identified 184 unique missense variants in the human proglucagon gene GCG obtained from exome and whole-genome sequencing of more than 450,000 individuals across diverse sub-populations. This provides an unprecedented source of population-wide genetic variation data on missense mutations and insights into the evolutionary constraint spectrum of proglucagon-derived peptides. We show that the stereotypical peptides glucagon, GLP-1 and GLP-2 display fewer evolutionary alterations and are more likely to be functionally affected by genetic variation compared to the rest of the gene products. Elucidating the spectrum of genetic variations and estimating the impact of how a peptide variant may influence human physiology and pathophysiology through changes in ligand binding and/or receptor signalling, are vital and serve as the first important step in understanding variability in glucose homeostasis, amino acid metabolism, intestinal epithelial growth, bone strength, appetite regulation, and other key physiological parameters controlled by these hormones.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2954
Author(s):  
Hsin-Pai Li ◽  
Chen-Yang Huang ◽  
Kar-Wai Lui ◽  
Yin-Kai Chao ◽  
Chun-Nan Yeh ◽  
...  

Background: Nasopharyngeal carcinoma (NPC) involves host genetics, environmental and viral factors. In clinical observations, patients of young and old ages were found to have higher recurrence and metastatic rates. Methods: Cytokine array was employed to screen druggable target(s). The candidate target(s) were confirmed through patient-derived xenografts (PDXs) and a new EBV-positive cell line, NPC-B13. Results: Overexpression of epithelial growth factor (EGF) and EGF receptor (EGFR) was detected in young patients than in older patients. The growth of NPC PDX tumors and cell lines was inhibited by EGFR inhibitors (EGFRi) cetuximab and afatinib when used separately or in combination with the cell cycle blocker palbociclib. Western blot analysis of these drug-treated PDXs demonstrated that the blockade of the EGF signaling pathway was associated with a decrease in the p-EGFR level and reduction in PDX tumor size. RNA sequencing results of PDX tumors elucidated that cell cycle-related pathways were suppressed in response to drug treatments. High EGFR expression (IHC score ≥ grade 3) was correlated with poor survival in metastatic patients (p = 0.008). Conclusions: Our results provide encouraging preliminary data related to the combination treatment of EGFRi and palbociclib in patients with NPC.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1568
Author(s):  
Ingrid Garzón ◽  
Boris Damián Jaimes-Parra ◽  
Manrique Pascual-Geler ◽  
José Manuel Cózar ◽  
María del Carmen Sánchez-Quevedo ◽  
...  

Several models of bioartificial human urothelial mucosa (UM) have been described recently. In this study, we generated novel tubularized UM substitutes using alternative sources of cells. Nanostructured fibrin–agarose biomaterials containing fibroblasts isolated from the human ureter were used as stroma substitutes. Then, human Wharton jelly mesenchymal stromal cells (HWJSC) were used to generate an epithelial-like layer on top. Three differentiation media were used for 7 and 14 days. Results showed that the biofabrication methods used here succeeded in generating a tubular structure consisting of a stromal substitute with a stratified epithelial-like layer on top, especially using a medium containing epithelial growth and differentiation factors (EM), although differentiation was not complete. At the functional level, UM substitutes were able to synthesize collagen fibers, proteoglycans and glycosaminoglycans, although the levels of control UM were not reached ex vivo. Epithelial differentiation was partially achieved, especially with EM after 14 days of development, with expression of keratins 7, 8, and 13 and pancytokeratin, desmoplakin, tight-junction protein-1, and uroplakin 2, although at lower levels than controls. These results confirm the partial urothelial differentiative potential of HWJSC and suggest that the biofabrication methods explored here were able to generate a potential substitute of the human UM for future clinical use.


2021 ◽  
Vol 160 (6) ◽  
pp. S-67-S-68
Author(s):  
Saeed Soleymanjahi ◽  
Valerie Blanc ◽  
Elizabeth A. Molitor ◽  
Terrence E. Riehl ◽  
Matthew A. Ciorba ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1303
Author(s):  
Edgar D. Moyers-Montoya ◽  
René Gerardo Escobedo-González ◽  
Claudia L. Vargas-Requena ◽  
Perla Elvia Garcia-Casillas ◽  
Carlos A. Martínez-Pérez

Polycaprolactone (PCL) is a well-known FDA approved biomaterial for tissue engineering. However, its hydrophobic properties limit its use for skin wound healing which makes its functionalization necessary. In this work, we present the fabrication and evaluation of PCL nanofibers by the electrospinning technique, as well as PCL functionalized with 6-deoxy-6-amino-β-cyclodextrin (aminated nanofibers). Afterwards, epithelial growth factor (EGF) was anchored onto hydrophilic PCL/deoxy-6-amino-β-cyclodextrin. The characterization of the three electrospun fibers was made by means of field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR); Confocal-Raman Spectroscopy were used for elucidated the chemical structure, the hydrophilicity was determined by Contact Angle (CA). In vitro cell proliferation test was made by seeding embryonic fibroblast cell line (3T3) onto the electrospun mats and in vivo studies in a murine model were conducted to prove its effectivity as skin wound healing material. The in vitro studies showed that aminated nanofibers without and with EGF had 100 and 150% more cell proliferation of 3T3 cells against the PCL alone, respectively. In vivo results showed that skin wound healing in a murine model was accelerated by the incorporation of the EGF. In addition, the EGF had favorable effects in epidermal cell proliferation. The study demonstrates that a protein of high biological interest like EGF can be attached covalently to the surface of a synthetic material enriched with amino groups. This kind of biomaterial has a great potential for applications in skin regeneration and wound healing.


Sign in / Sign up

Export Citation Format

Share Document