Analysis of a solar chimney with double inlet by means of venturi effect

Author(s):  
Thales De Freitas Villas Bôas ◽  
Felipe Person Malta ◽  
Cyro Albuquerque Neto
Keyword(s):  
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 674
Author(s):  
Paul Caicedo ◽  
David Wood ◽  
Craig Johansen

Solar chimney power plants (SCPPs) collect air heated over a large area on the ground and exhaust it through a turbine or turbines located near the base of a tall chimney to produce renewable electricity. SCPP design in practice is likely to be specific to the site and of variable size, both of which require a purpose-built turbine. If SCPP turbines cannot be mass produced, unlike wind turbines, for example, they should be as cheap as possible to manufacture as their design changes. It is argued that a radial inflow turbine with blades made from metal sheets, or similar material, is likely to achieve this objective. This turbine type has not previously been considered for SCPPs. This article presents the design of a radial turbine to be placed hypothetically at the bottom of the Manzanares SCPP, the only large prototype to be built. Three-dimensional computational fluid dynamics (CFD) simulations were used to assess the turbine’s performance when installed in the SCPP. Multiple reference frames with the renormalization group k-ε turbulence model, and a discrete ordinates non-gray radiation model were used in the CFD simulations. Three radial turbines were designed and simulated. The largest power output was 77.7 kW at a shaft speed of 15 rpm for a solar radiation of 850 W/m2 which exceeds by more than 40 kW the original axial turbine used in Manzanares. Further, the efficiency of this turbine matches the highest efficiency of competing turbine designs in the literature.


2021 ◽  
Vol 47 ◽  
pp. 101381
Author(s):  
Haihua Zhang ◽  
Yao Tao ◽  
Kate Nguyen ◽  
Fengling Han ◽  
Jie Li ◽  
...  
Keyword(s):  

Encyclopedia ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 409-422
Author(s):  
Haihua Zhang ◽  
Yao Tao ◽  
Long Shi

A solar chimney is a renewable energy system used to enhance the natural ventilation in a building based on solar and wind energy. It is one of the most representative solar-assisted passive ventilation systems attached to the building envelope. It performs exceptionally in enhancing natural ventilation and improving thermal comfort under certain climate conditions. The ventilation enhancement of solar chimneys has been widely studied numerically and experimentally. The assessment of solar chimney systems based on buoyancy ventilation relies heavily on the natural environment, experimental environment, and performance prediction methods, bringing great difficulties to quantitative analysis and parameterization research. With the increase in volume and complexity of modern building structures, current studies of solar chimneys have not yet obtained a unified design strategy and corresponding guidance. Meanwhile, combining a solar chimney with other passive ventilation systems has attracted much attention. The solar chimney-based integrated passive-assisted ventilation systems prolong the service life of an independent system and strengthen the ventilation ability for indoor cooling and heating. However, the progress is still slow regarding expanded applications and related research of solar chimneys in large volume and multi-layer buildings, and contradictory conclusions appear due to the inherent complexity of the system.


Author(s):  
Sellami Ali ◽  
Benlahcene Djaouida ◽  
Abdelmoumène Hakim Benmachiche ◽  
Zeroual Aouachria

Author(s):  
Md. Abdul Aziz Bhuiyan ◽  
Md Abdul Aziz Bhuiyan ◽  
Mehedi Hasan Bhuiyan ◽  
Mehedi Hasan Bhuiyan ◽  
Md Ashiqur Rahman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document