EFFECT OF FLOW CONDITIONS IN THE MECHANICAL DEGRADATION OF POLYMER SOLUTIONS FOR EOR IN A MICROFLUIDIC POROUS MEDIA

Author(s):  
Roberto Carvalho ◽  
Jorge Antonio Avendaño Benavides ◽  
Marcio CARVALHO
2009 ◽  
Vol 12 (05) ◽  
pp. 783-792 ◽  
Author(s):  
Randall S. Seright ◽  
J. Mac Seheult ◽  
Todd Talashek

Summary For applications in which enhanced-oil-recovery (EOR) polymer solutions are injected, we estimate injectivity losses (relative to water injectivity) if fractures are not open. We also consider the degree of fracture extension that may occur if fractures are open. Three principal EOR polymer properties are examined that affect injectivity:debris in the polymer,polymer rheology in porous media, andpolymer mechanical degradation. An improved test was developed to measure the tendency of EOR polymers to plug porous media. The new test demonstrated that plugging tendencies varied considerably among both partially hydrolyzed polyacrylamide (HPAM) and xanthan polymers. Rheology and mechanical degradation in porous media were quantified for a xanthan and an HPAM polymer. Consistent with previous work, we confirmed that xanthan solutions show pseudoplastic behavior in porous rock that closely parallels that in a viscometer. Xanthan was remarkably resistant to mechanical degradation, with a 0.1% xanthan solution (in seawater) experiencing only a 19% viscosity loss after flow through 102-md Berea sandstone at a pressure gradient of 24,600 psi/ft. For 0.1% HPAM in both 0.3% NaCl brine and seawater in 573-md Berea sandstone, Newtonian behavior was observed at low to moderate fluid fluxes, while pseudodilatant behavior was seen at moderate to high fluxes. No evidence of pseudoplastic behavior was seen in the porous rock, even though one solution exhibited a power-law index of 0.64 in a viscometer. For this HPAM in both brines, the onset of mechanical degradation occurred at a flux of 14 ft/d in 573-md Berea. Considering the polymer solutions investigated, satisfactory injection of more than 0.1 pore volume (PV) in field applications could only be expected for the cleanest polymers (i.e., that do not plug before 1,000 cm3/cm2 throughput), without inducing fractures (or formation parts for unconsolidated sands). Even in the absence of face plugging, the viscous nature of the solutions investigated requires that injectivity must be less than one-fifth that of water if formation parting is to be avoided (unless the injectant reduces the residual oil saturation and substantially increases the relative permeability to water). Since injectivity reductions of this magnitude are often economically unacceptable, fractures or fracture-like features are expected to open and extend significantly during the course of most polymer floods. Thus, an understanding of the orientation and growth of fractures may be crucial for EOR projects in which polymer solutions are injected. Introduction Maintaining mobility control is essential during chemical floods (polymer, surfactant, alkaline floods). Consequently, viscosification using water soluble polymers is usually needed during chemical EOR projects. Unfortunately, increased injectant viscosity could substantially reduce injectivity, slow fluid throughput, and delay oil production from flooded patterns. The objectives of this paper are to estimate injectivity losses associated with injection of polymer solutions if fractures are not open and to estimate the degree of fracture extension if fractures are open. We examine the three principal EOR polymer properties that affect injectivity:debris in the polymer,polymer rheology in porous media, andpolymer mechanical degradation. Although some reports suggest that polymer solutions can reduce the residual oil saturation below values expected for extensive waterflooding (and thereby increase the relative permeability to water), this effect is beyond the scope of this paper.


1993 ◽  
Vol 46 (11S) ◽  
pp. S63-S70 ◽  
Author(s):  
A. J. Mu¨ller ◽  
L. I. Medina ◽  
O. Pe´rez-Martin ◽  
S. Rodriguez ◽  
C. Romero ◽  
...  

The flow of aqueous poly(ethylene oxide) solutions through nonconsolidated porous media has been experimentally investigated. Three aspects of practical relevance have been addressed: the effect of polymer on flow distribution under nonuniform flow conditions, the mechanical degradation of the polymer in the porous media, and the effect of molecular weight on flow resistance. The nonuniform flow results indicate that, although the presence of polymer changes the distribution of the flow by affecting the region of the medium that is swept by the fluid, a significant increase in flow resistance is still observed above a critical Reynolds number, as it happens under uniform flow conditions. The degradation experiments show that the polymer is significantly degraded only in the region where a sizable increase in flow resistance is obtained with respect to the Newtonian behavior. The most significant effect of the molecular weight of the polymer is the fact that an increase in that parameter results in a substantial reduction of the Reynolds number at which the increased flow resistance is observed. Furthermore, the rate of change of this onset Reynolds number with polymer concentration appears to be independent of molecular weight. The results presented here indicate that the increase in flow resistance is not exclusively determined by the shear viscosity of the polymer solution.


Author(s):  
Badar Al-Shakry ◽  
Tormod Skauge ◽  
Behruz Shaker Shiran ◽  
Arne Skauge

Polymer flooding is an established enhanced oil recovery (EOR) method, still many aspects of polymer flooding are not well understood. This study investigates the influence of mechanical degradation on flow properties of polymers in porous media. Mechanical degradation due to high shear forces may occur in the injection well and at the entrance to the porous media. The polymers that give high viscosity yields at a sustainable economic cost are typically large, MW > 10 MDa, and have wide molecular weight distributions. Both MW and the distributions are altered by mechanical degradation, leading to changes in the flow rheology of the polymer. The polymer solutions were subjected to different degrees of pre-shearing and pre-filtering before injected into Bentheimer outcrop sandstone cores. Rheology studies of injected and produced polymer solutions were performed and interpreted together with in-situ rheology data. The core floods showed a predominant shear thickening behavior at high flow velocities which is due to successive contraction/expansion flow in pores. When pre-sheared, shear thickening was reduced but with no significant reduction in in-situ viscosity at lower flow rates. This may be explained by reduction in the extensional viscosity. Furthermore, the results show that successive degradation occurred which suggests that the assumption of the highest point of shear which determines mechanical degradation in a porous media does not hold for all field relevant conditions.


1999 ◽  
Vol 2 (3) ◽  
pp. 251-262
Author(s):  
P. Gestoso ◽  
A. J. Muller ◽  
A. E. Saez

SPE Journal ◽  
2022 ◽  
pp. 1-18
Author(s):  
Marat Sagyndikov ◽  
Randall Seright ◽  
Sarkyt Kudaibergenov ◽  
Evgeni Ogay

Summary During a polymer flood, the field operator must be convinced that the large chemical investment is not compromised during polymer injection. Furthermore, injectivity associated with the viscous polymer solutions must not be reduced to where fluid throughput in the reservoir and oil production rates become uneconomic. Fractures with limited length and proper orientation have been theoretically argued to dramatically increase polymer injectivity and eliminate polymer mechanical degradation. This paper confirms these predictions through a combination of calculations, laboratory measurements, and field observations (including step-rate tests, pressure transient analysis, and analysis of fluid samples flowed back from injection wells and produced from offset production wells) associated with the Kalamkas oil field in Western Kazakhstan. A novel method was developed to collect samples of fluids that were back-produced from injection wells using the natural energy of a reservoir at the wellhead. This method included a special procedure and surface-equipment scheme to protect samples from oxidative degradation. Rheological measurements of back-produced polymer solutions revealed no polymer mechanical degradation for conditions at the Kalamkas oil field. An injection well pressure falloff test and a step-rate test confirmed that polymer injection occurred above the formation parting pressure. The open fracture area was high enough to ensure low flow velocity for the polymer solution (and consequently, the mechanical stability of the polymer). Compared to other laboratory and field procedures, this new method is quick, simple, cheap, and reliable. Tests also confirmed that contact with the formation rapidly depleted dissolved oxygen from the fluids—thereby promoting polymer chemical stability.


Sign in / Sign up

Export Citation Format

Share Document