INFLUENCE OF GASOLINE AND ETHANOL COMBUSTION PROCESS ON THE BLOCK VIBRATION LEVEL OF OTTO CYCLE ENGINE

Author(s):  
Claudio Santana ◽  
Jose Eduardo Mautone Barros
2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Ghassan Nicolas ◽  
Hameed Metghalchi

The rate-controlled constrained-equilibrium method (RCCE) has been further developed to model the combustion process of ethanol air mixtures. The RCCE is a reduction technique based on local maximization of entropy or minimization of a relevant free energy at any time during the nonequilibrium evolution of the system subject to a set of kinetic constraints. An important part of RCCE calculation is determination of a set of constraints that can guide the nonequilibrium mixture to the final stable equilibrium state. In this study, 16 constraints have been developed to model the nonequilibrium ethanol combustion process. The method requires solution of 16 differential equations for the corresponding constraint potentials. Ignition delay calculations of ethanol oxidizer mixtures using RCCE have been compared to those of detailed chemical kinetics using 37 species and 235 reactions. Agreement between the two models is very good. In addition, ignition delay of C2H5OH/O2/Ar mixtures using RCCE has been compared with the experimental measurements in the shock tube and excellent agreement has been reached validating the RCCE calculation.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Dedi Nurdiansyah ◽  
Sudjito Soeparman ◽  
Eko Siswanto

This paper describes the ratio of levels of combustible species (CO, HC, CO2 and lambda) of a four-cycle otto motor with a six-stroke MUB-2 motor with additional combustion duration and two working steps. The increase in combustion duration aims to re-burn combustible species that have not been completely burned in the first combustion. This study used a 4 stroke motor with a capacity of 125 cc and then modified it into a 6 stroke motorbike with twice the duration of combustion. The observed local atmospheric conditions at a relative humidity of about 76% rH, and the ambient temperature and pressure were around 24 ° C and 101.32kPa, respectively. The implementation of data retrieval with crankshaft rotation at intervals of 600 rpm from 2400 rpm to 7200 rpm.Using an anlyser gas, the MUB-2 six-stroke engine showed 12.36% CO levels, 27.30% HC levels, 30.8 CO2 levels % and 1.7% lower lambda than conventional four-stroke engines. This means that in the 6 stroke MUB-2 motor, the combustion process of the air and fuel mixture is more perfect than the conventional 4 stroke motor.


Author(s):  
Jacob Klimstra ◽  
Christer Hattar

The efficiency of natural-gas-fuelled reciprocating engines increased from an average value of 35% in the year 1990 to over 46% for large-bore engines in 2005. Increasing the load (bmep) of the engines helped to reduce the negative effect of friction losses on efficiency and to reduce the relative heat losses from the combustion process. Doubling the cylinder bore decreased the heat escaping from the cylinder process by about a factor two. The analyses show that further increases in bmep and bore diameter will hardly help in achieving a better efficiency. Reduction of the friction losses appears the best path to follow for an even higher efficiency. The authors do not expect that the efficiency of an Otto-cycle gas engine will substantially exceed 49%.


Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


Author(s):  
M. A. Abd Halim ◽  
N. A. R. Nik Mohd ◽  
M. N. Mohd Nasir ◽  
M. N. Dahalan

Induction system or also known as the breathing system is a sub-component of the internal combustion system that supplies clean air for the combustion process. A good design of the induction system would be able to supply the air with adequate pressure, temperature and density for the combustion process to optimizing the engine performance. The induction system has an internal flow problem with a geometry that has rapid expansion or diverging and converging sections that may lead to sudden acceleration and deceleration of flow, flow separation and cause excessive turbulent fluctuation in the system. The aerodynamic performance of these induction systems influences the pressure drop effect and thus the engine performance. Therefore, in this work, the aerodynamics of motorcycle induction systems is to be investigated for a range of Cubic Feet per Minute (CFM). A three-dimensional simulation of the flow inside a generic 4-stroke motorcycle airbox were done using Reynolds-Averaged Navier Stokes (RANS) Computational Fluid Dynamics (CFD) solver in ANSYS Fluent version 11. The simulation results are validated by an experimental study performed using a flow bench. The study shows that the difference of the validation is 1.54% in average at the total pressure outlet. A potential improvement to the system have been observed and can be done to suit motorsports applications.


Author(s):  
Dragoslava D. Stojiljkovic ◽  
Vladimir V. Jovanovic ◽  
M. Radovanovic ◽  
Nebojsa G. Manic ◽  
Ivo R. Radulovic ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document