On the influence of the Lode angle on the pseudo-elastic behavior of Ni-Ti alloys under multiaxial loading programs

Author(s):  
Stefan Viggiano ◽  
Edgar Mamiya
2006 ◽  
Vol 70 (2) ◽  
pp. 110-113 ◽  
Author(s):  
Yoshito Takemoto ◽  
Ichiro Shimizu ◽  
Akira Sakakibara ◽  
Takehide Senuma
Keyword(s):  

Author(s):  
N. E. Paton ◽  
D. de Fontaine ◽  
J. C. Williams

The electron microscope has been used to study the diffusionless β → β + ω transformation occurring in certain titanium alloys at low temperatures. Evidence for such a transformation was obtained by Cometto et al by means of x-ray diffraction and resistivity measurements on a Ti-Nb alloy. The present work shows that this type of transformation can occur in several Ti alloys of suitable composition, and some of the details of the transformation are elucidated by means of direct observation in the electron microscope.Thin foils were examined in a Philips EM-300 electron microscope equipped with a uniaxial tilt, liquid nitrogen cooled, cold stage and a high resolution dark field device. Selected area electron diffraction was used to identify the phases present and the ω-phase was imaged in dark field by using a (101)ω reflection. Alloys were water quenched from 950°C, thinned, and mounted between copper grids to minimize temperature gradients in the foil.


Author(s):  
A. Lawley ◽  
M. R. Pinnel ◽  
A. Pattnaik

As part of a broad program on composite materials, the role of the interface on the micromechanics of deformation of metal-matrix composites is being studied. The approach is to correlate elastic behavior, micro and macroyielding, flow, and fracture behavior with associated structural detail (dislocation substructure, fracture characteristics) and stress-state. This provides an understanding of the mode of deformation from an atomistic viewpoint; a critical evaluation can then be made of existing models of composite behavior based on continuum mechanics. This paper covers the electron microscopy (transmission, fractography, scanning microscopy) of two distinct forms of composite material: conventional fiber-reinforced (aluminum-stainless steel) and directionally solidified eutectic alloys (aluminum-copper). In the former, the interface is in the form of a compound and/or solid solution whereas in directionally solidified alloys, the interface consists of a precise crystallographic boundary between the two constituents of the eutectic.


1984 ◽  
Vol 45 (C9) ◽  
pp. C9-417-C9-422
Author(s):  
A. Jimbo ◽  
T. Hashizume ◽  
T. Sakurai ◽  
K. Al-Saleh ◽  
H. W. Pickering
Keyword(s):  

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1275-C8-1276
Author(s):  
K. Sumiyama ◽  
H. Yasuda ◽  
Y. Nakamura

2003 ◽  
Vol 778 ◽  
Author(s):  
Rajdip Bandyopadhyaya ◽  
Weizhi Rong ◽  
Yong J. Suh ◽  
Sheldon K. Friedlander

AbstractCarbon black in the form of nanoparticle chains is used as a reinforcing filler in elastomers. However, the dynamics of the filler particles under tension and their role in the improvement of the mechanical properties of rubber are not well understood. We have studied experimentally the dynamics of isolated nanoparticle chain aggregates (NCAs) of carbon made by laser ablation, and also that of carbon black embedded in a polymer film. In situ studies of stretching and contraction of such chains in the transmission electron microscope (TEM) were conducted under different maximum values of strain. Stretching causes initially folded NCA to reorganize into a straight, taut configuration. Further stretching leads to either plastic deformation and breakage (at 37.4% strain) or to a partial elastic behavior of the chain at small strains (e.g. 2.3% strain). For all cases the chains were very flexible under tension. Similar reorientation and stretching was observed for carbon black chains embedded in a polymer film. Such flexible and elastic nature of NCAs point towards a possible mechanism of reinforcement of rubber by carbon black fillers.


Author(s):  
Salvatore Benfratello ◽  
Luigi Palizzolo ◽  
Pietro Tabbuso ◽  
Santo Vazzano
Keyword(s):  

2011 ◽  
Vol 56 (2) ◽  
pp. 503-508 ◽  
Author(s):  
R. Pęcherski ◽  
P. Szeptyński ◽  
M. Nowak

An Extension of Burzyński Hypothesis of Material Effort Accounting for the Third Invariant of Stress Tensor The aim of the paper is to propose an extension of the Burzyński hypothesis of material effort to account for the influence of the third invariant of stress tensor deviator. In the proposed formulation the contribution of the density of elastic energy of distortion in material effort is controlled by Lode angle. The resulted yield condition is analyzed and possible applications and comparison with the results known in the literature are discussed.


Sign in / Sign up

Export Citation Format

Share Document