Experimental validation of a reduced order model for a cantilevered flexible cylinder under VIV

Author(s):  
Renato Maia Matarazzo Orsino ◽  
Wagner Antonio Defensor Filho ◽  
CELSO Pupo Pesce
2022 ◽  
Author(s):  
Marco Pizzoli ◽  
Francesco Saltari ◽  
Giuliano Coppotelli ◽  
Franco Mastroddi

2004 ◽  
Vol 126 (1) ◽  
pp. 159-165 ◽  
Author(s):  
D. M. Feiner ◽  
J. H. Griffin

This paper is the second in a two-part study of identifying mistuning in bladed disks. It presents experimental validation of a new method of mistuning identification based on measurements of the vibratory response of the system as a whole. As a system-based method, this approach is particularly suited to integrally bladed rotors, whose blades cannot be removed for individual measurements. The method is based on a recently developed reduced-order model of mistuning called the fundamental mistuning model (FMM) and is applicable to isolated families of modes. Two versions of FMM system identification are applied to the experimental data: a basic version that requires some prior knowledge of the system’s properties, and a somewhat more complex version that determines the mistuning completely from experimental data.


Author(s):  
D. M. Feiner ◽  
J. H. Griffin

This paper is the second in a two-part study of identifying mistuning in bladed disks. It presents experimental validation of a new method of mistuning identification based on measurements of the vibratory response of the system as a whole. As a system based method, this approach is particularly suited to integrally bladed rotors, whose blades cannot be removed for individual measurements. The method is based on a recently developed reduced order model of mistuning called the Fundamental Mistuning Model and is applicable to isolated families of modes. Two versions of FMM system identification are applied to the experimental data: a basic version that requires some prior knowledge of the system’s properties, and a somewhat more complex version that determines the mistuning completely from experimental data.


Sign in / Sign up

Export Citation Format

Share Document