THE USE OF AN OPEN SOURCE FINITE ELEMENT CODE FOR AEROELASTIC ANALYSES

Author(s):  
Adolfo Gomes Marto ◽  
João Luiz F. Azevedo
Author(s):  
Peter A. Gustafson ◽  
Francisco A. Yapor Genao ◽  
Brett A. Bednarcyk ◽  
Evan J. Pineda

2020 ◽  
Vol 91 (2A) ◽  
pp. 1030-1041 ◽  
Author(s):  
Chunfang Meng ◽  
Bradford Hager

Abstract We present a crosslink constraint method for numerically modeling dynamic slip on intersecting faults, without prescribing slip (dis-)continuation directions. The fault intersections are constrained by crosslinked split nodes, such that the slip can only be continuous on one of the two intersecting faults at a time and location. The method resolves the episodic intersection offset by examining the dynamic fault traction resulting from two sets of constraint equations, one for each slip direction. To verify this method, we modify two benchmark problems, hosted at Southern California Earthquake Center (SCEC), by allowing a branching fault to step across a main fault. The modified SCEC problem results agree with our expectations that the intersection offset scenarios are dictated by the nucleation patch location and initial fault traction. This new method comes with an open-source finite-element code Defmod.


2001 ◽  
Vol 32 (10-11) ◽  
pp. 759-767 ◽  
Author(s):  
B Patzák ◽  
Z Bittnar

2013 ◽  
Author(s):  
Robert Cimrman ◽  
Miroslav Tůma ◽  
Matyáš Novák ◽  
Ondřej Čertík ◽  
Jiří Plešek ◽  
...  

2006 ◽  
Vol 306-308 ◽  
pp. 1151-1156 ◽  
Author(s):  
Chong Du Cho ◽  
Heung Shik Lee ◽  
Chang Boo Kim ◽  
Hyeon Gyu Beom

In this paper, a finite element code especially for micro-magnetostrictive actuators was developed. Two significant characteristics of the presented finite element code are: (1) the magnetostrictive hysteresis phenomenon is effectively taken into account; (2) intrinsic geometric feature of typical thin film structures of large length to thickness ratio, which makes it very difficult to construct finite element mesh in the region of the thin film, is considered reasonably in modeling micro-magneostrictive actuators. For verification purpose, magnetostrictive thin films were fabricated and tested in the form of a cantilevered actuator. The Tb-Fe film and Sm-Fe film are sputtered on the Si and Polyimide substrates individually. The magnetic and magnetostrictive properties of the sputtered magnetostrictive films are measured. The measured magnetostrictive coefficients are compared with the numerically calculated ones.


Sign in / Sign up

Export Citation Format

Share Document