scholarly journals Approximate T matrix and optical properties of spheroidal particles to third order with respect to size parameter

2020 ◽  
Author(s):  
MRA Majić ◽  
L Pratley ◽  
D Schebarchov ◽  
Walter Somerville ◽  
Baptiste Auguié ◽  
...  

© 2019 American Physical Society. In electromagnetic scattering, the so-called T matrix encompasses the optical response of a scatterer for any incident excitation and is most commonly defined using the basis of multipolar fields. It can therefore be viewed as a generalization of the concept of polarizability of the scatterer. We calculate here the series expansion of the T matrix for a spheroidal particle in the small-size, long-wavelength limit, up to third lowest order with respect to the size parameter, X, which we will define rigorously for a nonspherical particle. T is calculated from the standard extended boundary condition method with a linear system involving two infinite matrices P and Q, whose matrix elements are integrals on the particle surface. We show that the limiting form of the P and Q matrices, which is different in the special case of spheroid, ensures that this Taylor expansion can be obtained by considering only multipoles of order 3 or less (i.e., dipoles, quadrupoles, and octupoles). This allows us to obtain self-contained expressions for the Taylor expansion of T(X). The lowest order is O(X3) and equivalent to the quasistatic limit or Rayleigh approximation. Expressions to order O(X5) are obtained by Taylor expansion of the integrals in P and Q followed by matrix inversion. We then apply a radiative correction scheme, which makes the resulting expressions valid up to order O(X6). Orientation-averaged extinction, scattering, and absorption cross sections are then derived. All results are compared to the exact T-matrix predictions to confirm the validity of our expressions and assess their range of applicability. For a wavelength of 400 nm, the new approximation remains valid (within 1% error) up to particle dimensions of the order of 100-200 nm depending on the exact parameters (aspect ratio and material). These results provide a relatively simple and computationally friendly alternative to the standard T-matrix method for spheroidal particles smaller than the wavelength, in a size range much larger than for the commonly used Rayleigh approximation.

2020 ◽  
Author(s):  
MRA Majić ◽  
L Pratley ◽  
D Schebarchov ◽  
Walter Somerville ◽  
Baptiste Auguié ◽  
...  

© 2019 American Physical Society. In electromagnetic scattering, the so-called T matrix encompasses the optical response of a scatterer for any incident excitation and is most commonly defined using the basis of multipolar fields. It can therefore be viewed as a generalization of the concept of polarizability of the scatterer. We calculate here the series expansion of the T matrix for a spheroidal particle in the small-size, long-wavelength limit, up to third lowest order with respect to the size parameter, X, which we will define rigorously for a nonspherical particle. T is calculated from the standard extended boundary condition method with a linear system involving two infinite matrices P and Q, whose matrix elements are integrals on the particle surface. We show that the limiting form of the P and Q matrices, which is different in the special case of spheroid, ensures that this Taylor expansion can be obtained by considering only multipoles of order 3 or less (i.e., dipoles, quadrupoles, and octupoles). This allows us to obtain self-contained expressions for the Taylor expansion of T(X). The lowest order is O(X3) and equivalent to the quasistatic limit or Rayleigh approximation. Expressions to order O(X5) are obtained by Taylor expansion of the integrals in P and Q followed by matrix inversion. We then apply a radiative correction scheme, which makes the resulting expressions valid up to order O(X6). Orientation-averaged extinction, scattering, and absorption cross sections are then derived. All results are compared to the exact T-matrix predictions to confirm the validity of our expressions and assess their range of applicability. For a wavelength of 400 nm, the new approximation remains valid (within 1% error) up to particle dimensions of the order of 100-200 nm depending on the exact parameters (aspect ratio and material). These results provide a relatively simple and computationally friendly alternative to the standard T-matrix method for spheroidal particles smaller than the wavelength, in a size range much larger than for the commonly used Rayleigh approximation.


2020 ◽  
Author(s):  
MRA Majić ◽  
L Pratley ◽  
D Schebarchov ◽  
Walter Somerville ◽  
B Auguié ◽  
...  

© 2019 American Physical Society. In electromagnetic scattering, the so-called T matrix encompasses the optical response of a scatterer for any incident excitation and is most commonly defined using the basis of multipolar fields. It can therefore be viewed as a generalization of the concept of polarizability of the scatterer. We calculate here the series expansion of the T matrix for a spheroidal particle in the small-size, long-wavelength limit, up to third lowest order with respect to the size parameter, X, which we will define rigorously for a nonspherical particle. T is calculated from the standard extended boundary condition method with a linear system involving two infinite matrices P and Q, whose matrix elements are integrals on the particle surface. We show that the limiting form of the P and Q matrices, which is different in the special case of spheroid, ensures that this Taylor expansion can be obtained by considering only multipoles of order 3 or less (i.e., dipoles, quadrupoles, and octupoles). This allows us to obtain self-contained expressions for the Taylor expansion of T(X). The lowest order is O(X3) and equivalent to the quasistatic limit or Rayleigh approximation. Expressions to order O(X5) are obtained by Taylor expansion of the integrals in P and Q followed by matrix inversion. We then apply a radiative correction scheme, which makes the resulting expressions valid up to order O(X6). Orientation-averaged extinction, scattering, and absorption cross sections are then derived. All results are compared to the exact T-matrix predictions to confirm the validity of our expressions and assess their range of applicability. For a wavelength of 400 nm, the new approximation remains valid (within 1% error) up to particle dimensions of the order of 100-200 nm depending on the exact parameters (aspect ratio and material). These results provide a relatively simple and computationally friendly alternative to the standard T-matrix method for spheroidal particles smaller than the wavelength, in a size range much larger than for the commonly used Rayleigh approximation.


2020 ◽  
Author(s):  
D Schebarchov ◽  
EC Le Ru ◽  
Johan Grand ◽  
B Auguié

The T-matrix framework offers accurate and efficient modelling of electromagnetic scattering by nonspherical particles in a wide variety of applications ranging from nano-optics to atmospheric science. Its analytical setting, in contrast to purely numerical methods, also provides a fertile ground for further theoretical developments. Perhaps the main purported limitation of the method, when extended to systems of multiple particles, is the often-stated requirement that the smallest circumscribed spheres of neighbouring scatterers not overlap. We consider here such a scenario with two adjacent spheroids whose aspect ratio we vary to control the overlap of the smallest circumscribed spheres, and compute far-field cross-sections and near-field intensities using the superposition T-matrix method. The results correctly converge far beyond the no-overlap condition, and although numerical instabilities appear for the most extreme cases of overlap, requiring high multipole orders, convergence can still be obtained by switching to quadruple precision. Local fields converge wherever the Rayleigh hypothesis is valid for each single scatterer and, remarkably, even in parts of the overlap region. Our results are validated against finite-element calculations, and the agreement demonstrates that the superposition T-matrix method is more robust and broadly applicable than generally assumed.


2020 ◽  
Author(s):  
D Schebarchov ◽  
EC Le Ru ◽  
Johan Grand ◽  
Baptiste Auguié

The T-matrix framework offers accurate and efficient modelling of electromagnetic scattering by nonspherical particles in a wide variety of applications ranging from nano-optics to atmospheric science. Its analytical setting, in contrast to purely numerical methods, also provides a fertile ground for further theoretical developments. Perhaps the main purported limitation of the method, when extended to systems of multiple particles, is the often-stated requirement that the smallest circumscribed spheres of neighbouring scatterers not overlap. We consider here such a scenario with two adjacent spheroids whose aspect ratio we vary to control the overlap of the smallest circumscribed spheres, and compute far-field cross-sections and near-field intensities using the superposition T-matrix method. The results correctly converge far beyond the no-overlap condition, and although numerical instabilities appear for the most extreme cases of overlap, requiring high multipole orders, convergence can still be obtained by switching to quadruple precision. Local fields converge wherever the Rayleigh hypothesis is valid for each single scatterer and, remarkably, even in parts of the overlap region. Our results are validated against finite-element calculations, and the agreement demonstrates that the superposition T-matrix method is more robust and broadly applicable than generally assumed.


2020 ◽  
Author(s):  
D Schebarchov ◽  
EC Le Ru ◽  
Johan Grand ◽  
Baptiste Auguié

The T-matrix framework offers accurate and efficient modelling of electromagnetic scattering by nonspherical particles in a wide variety of applications ranging from nano-optics to atmospheric science. Its analytical setting, in contrast to purely numerical methods, also provides a fertile ground for further theoretical developments. Perhaps the main purported limitation of the method, when extended to systems of multiple particles, is the often-stated requirement that the smallest circumscribed spheres of neighbouring scatterers not overlap. We consider here such a scenario with two adjacent spheroids whose aspect ratio we vary to control the overlap of the smallest circumscribed spheres, and compute far-field cross-sections and near-field intensities using the superposition T-matrix method. The results correctly converge far beyond the no-overlap condition, and although numerical instabilities appear for the most extreme cases of overlap, requiring high multipole orders, convergence can still be obtained by switching to quadruple precision. Local fields converge wherever the Rayleigh hypothesis is valid for each single scatterer and, remarkably, even in parts of the overlap region. Our results are validated against finite-element calculations, and the agreement demonstrates that the superposition T-matrix method is more robust and broadly applicable than generally assumed.


2009 ◽  
Vol 18 (05n06) ◽  
pp. 1271-1281 ◽  
Author(s):  
B. K. JAIN ◽  
N. J. UPADHYAY ◽  
K. P. KHEMCHANDANI ◽  
N. G. KELKAR

We present a study of the η production at low energies in pd collision with 3He and pd nuclear systems in the final state. The η production mechanism is described by a two-step model and the final state interactions are included fully. The η - d and η - 3He final state interactions are incorporated through the solution of the Lippmann Schwinger equation for a half off-shell η - AT-matrix. For η - d this t -matrix is written in a factorized form, with an off-shell form factor multiplying an on-shell part having the scattering length representation. The p - d final state interaction is included by multiplying the production matrix element by the inverse of the Jost function which includes the strong as well as the Coulomb interaction. The total cross sections are found to be strongly affected by both the η - d and the p - d final state interactions. The η - 3HeT-matrix is obtained in the Finite Rank Approximation (FRA) by solving few-body equations. The calculated total cross sections are in good accord with the available experimental data. Through the time delay method of Wigner, we also explore the possibility of the existence of quasi-bound η-3 He mesic states in this η - 3He T -matrix. We find that the T -matrix which reproduces the low energy pd → 3He η data implies a quasi-bound eta state near threshold. This is in accord with experimental indications.


Sign in / Sign up

Export Citation Format

Share Document