scholarly journals The Neogene seismic stratigraphy and uplift history of the Otago Shelf, New Zealand

2021 ◽  
Author(s):  
◽  
Michael Clark

<p>The Otago continental shelf is a prospective petroleum area on the east side of the South Island New Zealand. During the Neogene it evolved from a post-rift to passive margin as giant progrades extended eastward across the shelf, fed by tectonic uplift and erosion of the Southern Alps to the west. Seismic reflection profiles reveal an uplifted limestone horizon near the Dunedin Volcano. This may be caused by a buoyant load under the lithosphere and can be spatially and temporally linked to the Dunedin Volcano and geophysical anomalies in the area.  This thesis utilises 2D and 3D seismic data to map Neogene sequence boundaries over the Otago Shelf. Seven such sequence boundaries have been mapped based on distinctive seismic characteristics above and below these surfaces. These surfaces have been tied to nearby petroleum and Integrated Ocean Drilling Project wells using biostratigraphic data and then used to generate a series of isopach and depth maps that document the Neogene evolution of this margin. The maps depict the deposition of Neogene sediment and provide age constraints to structural events in the basin such as the uplift near Dunedin and fault movement on the Endeavour High.  The maps are then used to develop a lithospheric flexure model where uplift is interpreted to have been caused by asthenospheric upwelling beneath Dunedin. The model provides insight into the conditions that led to the flexure of the lithosphere, specifically the elastic thickness of the plate and the magnitude and depth distribution of buoyant intrusive material that fed the Dunedin Volcano. Asthenospheric upwelling explains elevated heat flow around Dunedin and would result in enhanced petroleum maturity. This highlights the potential for petroleum generation in source rocks immediately offshore from Dunedin.</p>

2021 ◽  
Author(s):  
◽  
Michael Clark

<p>The Otago continental shelf is a prospective petroleum area on the east side of the South Island New Zealand. During the Neogene it evolved from a post-rift to passive margin as giant progrades extended eastward across the shelf, fed by tectonic uplift and erosion of the Southern Alps to the west. Seismic reflection profiles reveal an uplifted limestone horizon near the Dunedin Volcano. This may be caused by a buoyant load under the lithosphere and can be spatially and temporally linked to the Dunedin Volcano and geophysical anomalies in the area.  This thesis utilises 2D and 3D seismic data to map Neogene sequence boundaries over the Otago Shelf. Seven such sequence boundaries have been mapped based on distinctive seismic characteristics above and below these surfaces. These surfaces have been tied to nearby petroleum and Integrated Ocean Drilling Project wells using biostratigraphic data and then used to generate a series of isopach and depth maps that document the Neogene evolution of this margin. The maps depict the deposition of Neogene sediment and provide age constraints to structural events in the basin such as the uplift near Dunedin and fault movement on the Endeavour High.  The maps are then used to develop a lithospheric flexure model where uplift is interpreted to have been caused by asthenospheric upwelling beneath Dunedin. The model provides insight into the conditions that led to the flexure of the lithosphere, specifically the elastic thickness of the plate and the magnitude and depth distribution of buoyant intrusive material that fed the Dunedin Volcano. Asthenospheric upwelling explains elevated heat flow around Dunedin and would result in enhanced petroleum maturity. This highlights the potential for petroleum generation in source rocks immediately offshore from Dunedin.</p>


2021 ◽  
pp. M57-2016-5
Author(s):  
Karen M. Fallas ◽  
Robert B. MacNaughton ◽  
Peter K. Hannigan ◽  
Bernard C. MacLean

AbstractThe Mackenzie-Peel Platform tectono-sedimentary element, and the overlying Ellesmerian Foreland tectono-sedimentary element, consist of Cambrian to Early Carboniferous shelf and slope sedimentary deposits in Canada&s northern Interior Plains. In this chapter, these elements are combined into the Mackenzie-Ellesmerian Composite Tectono-Sedimentary Element. The history of the area includes early extensional faulting and subsidence in the Mackenzie Trough, passive margin deposition across the Mackenzie-Peel Platform, local uplift and erosion along the Keele Arch, subsidence and deposition in the Ellesmerian Foreland, possible minor folding during the Ellesmerian Orogeny, and folding and faulting in Cretaceous to Eocene time associated with the development of the Canadian Cordillera. Recorded petroleum discoveries are within Cambrian sandstone (Mount Clark Formation), Devonian carbonate strata (Ramparts and Fort Norman formations), and Devonian shale (Canol Formation). Additional oil and gas shows are documented from Cambrian to Silurian carbonate units (Franklin Mountain and Mount Kindle formations), Devonian carbonate units (Arnica, Landry, and Bear Rock formations), and Late Devonian to Early Carboniferous siliciclastic units (Imperial and Tuttle Formations). Petroleum exploration activity within the area has occurred in several phases since 1920, most of it associated with the one producing oil field at Norman Wells.


2003 ◽  
Vol 43 (1) ◽  
pp. 59 ◽  
Author(s):  
I.R. Duddy ◽  
B. Erout ◽  
P.F. Green ◽  
P.V. Crowhurst ◽  
P.J. Boult

Reconstructed thermal and structural histories derived from new AFTA Apatite Fission Track Analysis, vitrinite reflectance and (U-Th)/He apatite dating results from the Morum–1 well, Otway Basin, reveal that the Morum High is a mid-Tertiary inversion structure. Uplift and erosion commencing in the Late Paleocene to mid-Eocene (57–40 Ma) removed around 1,500 m of sedimentary section. The eroded section is attributed to the Paleocene- Eocene Wangerrip Group which is considered to have been deposited in a major depocentre in the vicinity of the present Morum High. This depocentre is interpreted to have been one of a number of transtensional basins developed at the margin of the Morum Sub-basin and adjacent to the Tartwaup Hinge Zone and Mussel Fault during the Early Tertiary. The Portland Trough in Victoria represents a similar depocentre in which over 1,500 m of Wangerrip Group section, mostly represented by deltaic sediments of the Early Eocene Dilwyn Formation, is still preserved.Quantification of the maximum paleotemperature profile in Morum–1 immediately prior to Late Paleocene to mid-Eocene inversion shows that the paleo-geothemal gradient at the time was between 21 and 31°C/km, similar to the present-day level of 29°C/km, demonstrating that there has been little change in basal heat flow since the Early Tertiary.Reconstruction of the thermal history at the Trumpet–1 location reveals no evidence for any periods of significant uplift and erosion, demonstrating the relative stability of this part of the Crayfish Platform since the Late Cretaceous.The thermal and burial histories at Morum–1 and Trumpet–1 have been used to calibrate a Temis2D hydrocarbon generation and migration model along seismic line 85-13, encompassing the Crayfish Platform, Morum High and Morum Sub-basin. The model shows the cessation of active hydrocarbon generation from Eumeralla Formation source rocks around the Morum High due to cooling at 45 Ma (within the range 57–40 Ma) resulting from uplift and erosion of a Wangerrip Group basin. There has been almost no hydrocarbon generation from the Eumeralla Formation beneath the Crayfish Platform.Migration of hydrocarbons generated from the Eumeralla Formation began in the Late Cretaceous in the Morum Sub-basin and is predicted to continue to the present day, with the potential for accumulations in suitably placed reservoirs within the Late Cretaceous package both within the Morum Sub-basin and at the southern margin of the Crayfish Platform.


The geology of the Malvern Hills has been the subject of controversy since the 1850s. Many of the problems have now been resolved by using a combination of techniques including mapping, seismic-reflection profiling, deep drilling and geochronology. The Malvern Lineament is a major north-south trending crustal structure with a complex history of tectonic activity. In early Palaeozoic times thrusting on the Malvern axis caused uplift of the area to the east of the axis and some thickening of sedimentary deposits to the west. The importance of the Llandovery unconformity along the western side of the Malvern Hills is stressed. In late Carboniferous times there was major thrusting in a westerly direction, probably associated with dextral transpression, and considerable uplift and erosion of the area to the east of the Malverns. In Permian and Triassic times an extensional lithospheric stress field was initiated. This resulted in reactivation of the earlier thrusts as major normal faults down throwing to the east and with throws, locally, in excess of 2.5 km. These faults, which dip eastwards at between 35 and 50°, are detectable on seismic-reflection profiles to a depth of about 5 km and controlled the development of the Worcester Basin, inverting the site of an older ‘high’.


2003 ◽  
Vol 82 (1) ◽  
pp. 71-90 ◽  
Author(s):  
J.M. Verweij ◽  
H.J. Simmelink ◽  
R.T. Van Balen ◽  
P. David

Abstract2D Basin modelling was used to evaluate the response of source rock maturation, and of petroleum expulsion, migration, accumulation and preservation to the evolution of the southern part of the inverted Broad Fourteens Basin. Modelling results show that the temperature, maturation and petroleum generation history as well as migration characteristics of both the Jurassic oil systems and the Carboniferous gas systems vary over short distances relative to the differences in burial history of the basin. Model results indicate that no major gas accumulations are preserved in the Slochteren Formation along the cross-section at present-day. Gas accumulations are predicted in sandstone-dominated Triassic units in the southern part of the section. Present-day oil accumulations predicted in the Vlieland Sandstone Formation sealed by the Vlieland Claystone Formation (in P9 and Q1 crestal structures) are in accordance with known oil accumulations. Additional oil accumulations are predicted in the sandstone-dominated Middle Werkendam Member, and in sandstones of the Delfland Subgroup.The modelling offers an explanation for the different geochemical compositions of the accumulated oils in the P9 and Q1 areas. Modelling implies, that the oils in the Q1 oil field were sourced by remigrated oils expelled over time, from early mature to mature source rocks of the Posidonia Shale Formation. The biodegraded and water-washed nature of the Q1 oil is explained by the concentrated topography-induced groundwater flow through the Vlieland Sandstone Formation during the Late Cretaceous inversion of the basin. The oils accumulated in the P9 area were sourced from an early mature part of the Posidonia Shale Formation and were probably not affected by water washing and biodegradation because of post-inversion charging of the reservoir.


Sign in / Sign up

Export Citation Format

Share Document