scholarly journals MICE-PES: An Algorithm for Accurate Conformational Analysis and its Implementation to Natural Products

2021 ◽  
Author(s):  
◽  
Muhammad Ali Hashmi

<p>Secondary metabolites from natural sources have revolutionized the modern drug industry by acting as lead compounds. Many commercial drugs have evolved originally from natural molecules before being synthesized in the laboratory for commercialization. Because of the importance of natural molecules, it is crucial to determine their structural properties carefully as it is essential for their synthesis and studying their pharmacological behaviour. Many natural molecules have flexible structures and can adopt many different conformations in solution at room temperature. Hence, the determination of their relative configuration is a challenging task with the available experimental techniques. For structural analysis of natural molecules and to study their properties, all conformers which might be responsible for their chemical properties have to be considered.  Theoretical chemistry has been very helpful in absolute structure determination of complex and conformationally flexible natural molecules by calculating their theoretical nuclear magnetic resonance, ultraviolet, infra red, and circular dichroism spectra etc. There are a number of software tools that offer conformational analysis by utilizing different molecular mechanics approaches. They produce a large number of possible conformers and are not general purpose, thus compromising accuracy. Apart from that, different force fields available for conformational analysis and minimization have been designed for specific molecular classes and do not produce good results beyond their scope.  In the past, there have been reports about a “build-up procedure” for predicting the low energy conformations of peptides by optimising smaller fragments of the molecule under study and then joining them while minimizing their energies using force fields. Later on, this method was extended to predict the structure of DNA from sequences. This method used force field methods and did not gain much popularity due to its various limitations.  Here, MICE-PES (Method for the Incremental Construction and Exploration of the Potential Energy Surface) is presented, an algorithm which performs a conformational analysis using high level quantum chemical calculations by building the molecule incrementally from its smallest possible analogue whose conformational degrees of freedom are very well separated than the rest of the molecule. MICE-PES has been validated through studies on known biomolecule 3-epi-xestoaminol whose absolute configuration has been determined already by experimental and theoretical methods. MICE-PES has also been used to assign the relative configuration of a natural product (meroterphenol C) whose configuration could not be established experimentally. Overall, the development of MICE-PES will be very helpful in solving problems in the study of conformationally flexible systems, in all aspects of organic chemistry.</p>

2021 ◽  
Author(s):  
◽  
Muhammad Ali Hashmi

<p>Secondary metabolites from natural sources have revolutionized the modern drug industry by acting as lead compounds. Many commercial drugs have evolved originally from natural molecules before being synthesized in the laboratory for commercialization. Because of the importance of natural molecules, it is crucial to determine their structural properties carefully as it is essential for their synthesis and studying their pharmacological behaviour. Many natural molecules have flexible structures and can adopt many different conformations in solution at room temperature. Hence, the determination of their relative configuration is a challenging task with the available experimental techniques. For structural analysis of natural molecules and to study their properties, all conformers which might be responsible for their chemical properties have to be considered.  Theoretical chemistry has been very helpful in absolute structure determination of complex and conformationally flexible natural molecules by calculating their theoretical nuclear magnetic resonance, ultraviolet, infra red, and circular dichroism spectra etc. There are a number of software tools that offer conformational analysis by utilizing different molecular mechanics approaches. They produce a large number of possible conformers and are not general purpose, thus compromising accuracy. Apart from that, different force fields available for conformational analysis and minimization have been designed for specific molecular classes and do not produce good results beyond their scope.  In the past, there have been reports about a “build-up procedure” for predicting the low energy conformations of peptides by optimising smaller fragments of the molecule under study and then joining them while minimizing their energies using force fields. Later on, this method was extended to predict the structure of DNA from sequences. This method used force field methods and did not gain much popularity due to its various limitations.  Here, MICE-PES (Method for the Incremental Construction and Exploration of the Potential Energy Surface) is presented, an algorithm which performs a conformational analysis using high level quantum chemical calculations by building the molecule incrementally from its smallest possible analogue whose conformational degrees of freedom are very well separated than the rest of the molecule. MICE-PES has been validated through studies on known biomolecule 3-epi-xestoaminol whose absolute configuration has been determined already by experimental and theoretical methods. MICE-PES has also been used to assign the relative configuration of a natural product (meroterphenol C) whose configuration could not be established experimentally. Overall, the development of MICE-PES will be very helpful in solving problems in the study of conformationally flexible systems, in all aspects of organic chemistry.</p>


Author(s):  
Martin Schulze ◽  
Stefan Dietz ◽  
Bernhard Burgermeister ◽  
Andrey Tuganov ◽  
Holger Lang ◽  
...  

Current challenges in industrial multibody system simulation are often beyond the classical range of application of existing industrial simulation tools. The present paper describes an extension of a recursive order-n multibody system (MBS) formulation to nonlinear models of flexible deformation that are of particular interest in the dynamical simulation of wind turbines. The floating frame of reference representation of flexible bodies is generalized to nonlinear structural models by a straightforward transformation of the equations of motion (EoM). The approach is discussed in detail for the integration of a recently developed discrete Cosserat rod model representing beamlike flexible structures into a general purpose MBS software package. For an efficient static and dynamic simulation, the solvers of the MBS software are adapted to the resulting class of MBS models that are characterized by a large number of degrees of freedom, stiffness, and high frequency components. As a practical example, the run-up of a simplified three-bladed wind turbine is studied where the dynamic deformations of the three blades are calculated by the Cosserat rod model.


2018 ◽  
Vol 14 ◽  
pp. 2461-2467 ◽  
Author(s):  
Alex Frichert ◽  
Peter G Jones ◽  
Thomas Lindel

The first synthesis of diterpenoid eunicellane skeletons incorporating a 1,3-cyclohexadiene moiety is presented. Key step is a low-valent titanium-induced pinacol cyclization that proved to be perfectly diastereoselective. Determination of the relative configuration of the diol was aided by the conversion to the diastereomer by oxidation and reduction. Conformational analysis of some of the resulting diols obtained under McMurry conditions was complicated by the presence of several conformers of similar energy. The pinacol coupling appears to start at the ketone, as indicated by the selective reduction of non-cyclizing cyclohexane systems that were synthesized from limonene oxide. The title compounds and their synthetic precursors are prone to aromatization on contact with air oxygen. Attempted synthesis of cyclohexene-containing eunicellane bicycles by elimination of water from tertiary alkynyl carbinols afforded novel allene systems. Our study may be of help towards the total synthesis of solenopodin or klysimplexin derivatives.


Author(s):  
O.S. Bezuglova ◽  

Rostov Region belongs to the highly protected natural territories characterized by the continuous plowing. There territories are the only reserves with the soils preserved in their natural state. However, these areas often lack detailed information about the soils quality and composition. Surveying soils on these territories is crucial for determination of their basic physical and chemical properties. The resulted compilation of soil maps could lay a foundation for creating the Red Book of Soils and the formation of a section in the soil-geographical database of the Russian Federation. Subsequently, such information can be used as a background data for the main types of soils in the region. It will be also valuable during monitoring and justification of conservation measures.


2021 ◽  
Vol 23 (4) ◽  
pp. 1321-1326
Author(s):  
Hongjun Jang ◽  
Soo Yeon Kwak ◽  
Dongjoo Lee ◽  
Juan V. Alegre-Requena ◽  
Hyoungsu Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document