The Geochemistry and Ecotoxicity of Offshore New Zealand Phosphorites

2021 ◽  
Author(s):  
◽  
Grace Elizabeth Frontin-Rollet

<p>The New Zealand offshore seabed hosts diverse resources including phosphate rich rocks. Phosphate rock deposits on the Chatham Rise have been the focus of previous investigations into their composition and mining potential; however, the diversity of the geochemistry of phosphate deposits, including their wider distribution beyond the Chatham Rise, their trace metal budget, and potential for ecotoxicity, remain poorly characterised. This study addresses some of these gaps by presenting a geochemical investigation, including trace metals, for a range of phosphate nodules from across the Chatham Rise, Bollons Seamount and offshore southeastern South Island. Elutriate and reconnaissance bioaccumulation experiments provide insights into the potential for ecotoxic trace metal release and effects on biota should sediment disturbance through mining activities occur.  The bulk chemistry of Bollons Seamount phosphorite nodules have been characterised for the first time, and show significant enrichment in first row transition metals; Co, Ni, Cu, Zn, in addition to Sr, Y, Mo, U, MnO, CaO and P2O5, and depletion in TiO2, Al2O3, MgO, K2O, FeO, SiO2, Sc, Cr, Ga, Rb, Cs, Hf, and Th relative to average upper continental crust. The cores of these nodules are dominated by apatite, quartz and anorthoclase phases, which are cross cut by Mn rich dendrites. The abundant presence of these minerals results in the significant differences in chemistry observed relative to Chatham Rise phosphorite nodules. The nodules also contain a secondary authigenic apatite phase, with a Mn crust rim. Significant rare earth element enrichment (REE) is most likely due to efficient scavenging by the Mn crust, resulting in seawater REE patterns characterised by negative Ce and Eu anomalies and heavy rare earth element enrichment.  The bulk geochemistry of the Chatham Rise and offshore South Island phosphorite nodules is characterised by enrichment in CaO, P2O5, Sr, U, Y, Mo and depletion in TiO2, Al2O3, MnO, MgO, FeO, K2O, Sc, Cr, Cu, Ga, Rb, Cs, Ba, Hf, Ta, Pb and Th relative to average upper continental crust. The low concentrations of Cd in Chatham Rise, offshore South Island, and Bollons Seamount phosphorites make them potentially suitable sources for direct application fertilizers.  The New Zealand marine phosphorite nodule deposits formed by repeated cycles of erosive bottom currents and phosphogenesis, resulting in the winnowing and concentration of the deposits. The iron pump model is proposed as a mechanism for the formation of apatite and associated mineral phases, giving the nodules their characteristic concentric zoning. The migration of the nodules through the oxic, suboxic, and anoxic zones of the sediment profile led to the formation of glaucony, apatite (suboxic zone), goethite (oxic zone), and pyrite with associated U enriched (anoxic zone) minerals. Rare earth elements (REE) in the Chatham Rise phosphorite nodules are associated with the glaucony rim minerals, and indicate that since the formation of the rims, very little diagenesis has occurred, preserving seawater REE patterns characterised by negative Ce and Eu anomalies and heavy REE enrichment. Site specific enrichments in trace elements Ba, V, Co, Ni, Cu, Zn, Y, Cd and Pb are attributed to either differences in incorporation of material into precursor carbonate e.g. volcanic materials, or higher fluxes of organic matter, delivering high concentrations of essential metals from biota, especially Cu and Zn.  Direct pore water measurements from surficial sediment of the Chatham Rise show high concentrations of dissolved Fe and Mn, along with Cu, indicating suboxic conditions. High Cu concentrations measured in sediment pore water suggest that Cu release requires monitoring should seafloor surficial sediments on the Chatham Rise be disturbed. However, the elutriate experiments were not able to resolve if Cu release by sediment disturbance would exceed Australian and New Zealand Environment Conservation Council (2000) environmental guideline trigger values.  The surrogate amphipod species Chaetocorophium c.f. lucasi shows promise as a biomonitor for disturbed marine sediments. Elements enriched in surficial sediments and phosphorite nodules, Hg, Pb, Fe, U and V, were not observed to bioaccumulate. Site specific differences in chemistry were observed, specifically in the different total relative bioaccumulation of Mo between amphipods exposed to sediments from two different sites. This suggests that future monitoring of chemical release during marine sediment disturbance requires the full geochemical characterisation of the substrate. Furthermore, fresh sediment and deep water should be used for future elutriate experiments, as storage of material by freeze-thawing and/or refrigeration causes mobilisation of some key trace metals such as U, V, Mo, Mn.</p>

2021 ◽  
Author(s):  
◽  
Grace Elizabeth Frontin-Rollet

<p>The New Zealand offshore seabed hosts diverse resources including phosphate rich rocks. Phosphate rock deposits on the Chatham Rise have been the focus of previous investigations into their composition and mining potential; however, the diversity of the geochemistry of phosphate deposits, including their wider distribution beyond the Chatham Rise, their trace metal budget, and potential for ecotoxicity, remain poorly characterised. This study addresses some of these gaps by presenting a geochemical investigation, including trace metals, for a range of phosphate nodules from across the Chatham Rise, Bollons Seamount and offshore southeastern South Island. Elutriate and reconnaissance bioaccumulation experiments provide insights into the potential for ecotoxic trace metal release and effects on biota should sediment disturbance through mining activities occur.  The bulk chemistry of Bollons Seamount phosphorite nodules have been characterised for the first time, and show significant enrichment in first row transition metals; Co, Ni, Cu, Zn, in addition to Sr, Y, Mo, U, MnO, CaO and P2O5, and depletion in TiO2, Al2O3, MgO, K2O, FeO, SiO2, Sc, Cr, Ga, Rb, Cs, Hf, and Th relative to average upper continental crust. The cores of these nodules are dominated by apatite, quartz and anorthoclase phases, which are cross cut by Mn rich dendrites. The abundant presence of these minerals results in the significant differences in chemistry observed relative to Chatham Rise phosphorite nodules. The nodules also contain a secondary authigenic apatite phase, with a Mn crust rim. Significant rare earth element enrichment (REE) is most likely due to efficient scavenging by the Mn crust, resulting in seawater REE patterns characterised by negative Ce and Eu anomalies and heavy rare earth element enrichment.  The bulk geochemistry of the Chatham Rise and offshore South Island phosphorite nodules is characterised by enrichment in CaO, P2O5, Sr, U, Y, Mo and depletion in TiO2, Al2O3, MnO, MgO, FeO, K2O, Sc, Cr, Cu, Ga, Rb, Cs, Ba, Hf, Ta, Pb and Th relative to average upper continental crust. The low concentrations of Cd in Chatham Rise, offshore South Island, and Bollons Seamount phosphorites make them potentially suitable sources for direct application fertilizers.  The New Zealand marine phosphorite nodule deposits formed by repeated cycles of erosive bottom currents and phosphogenesis, resulting in the winnowing and concentration of the deposits. The iron pump model is proposed as a mechanism for the formation of apatite and associated mineral phases, giving the nodules their characteristic concentric zoning. The migration of the nodules through the oxic, suboxic, and anoxic zones of the sediment profile led to the formation of glaucony, apatite (suboxic zone), goethite (oxic zone), and pyrite with associated U enriched (anoxic zone) minerals. Rare earth elements (REE) in the Chatham Rise phosphorite nodules are associated with the glaucony rim minerals, and indicate that since the formation of the rims, very little diagenesis has occurred, preserving seawater REE patterns characterised by negative Ce and Eu anomalies and heavy REE enrichment. Site specific enrichments in trace elements Ba, V, Co, Ni, Cu, Zn, Y, Cd and Pb are attributed to either differences in incorporation of material into precursor carbonate e.g. volcanic materials, or higher fluxes of organic matter, delivering high concentrations of essential metals from biota, especially Cu and Zn.  Direct pore water measurements from surficial sediment of the Chatham Rise show high concentrations of dissolved Fe and Mn, along with Cu, indicating suboxic conditions. High Cu concentrations measured in sediment pore water suggest that Cu release requires monitoring should seafloor surficial sediments on the Chatham Rise be disturbed. However, the elutriate experiments were not able to resolve if Cu release by sediment disturbance would exceed Australian and New Zealand Environment Conservation Council (2000) environmental guideline trigger values.  The surrogate amphipod species Chaetocorophium c.f. lucasi shows promise as a biomonitor for disturbed marine sediments. Elements enriched in surficial sediments and phosphorite nodules, Hg, Pb, Fe, U and V, were not observed to bioaccumulate. Site specific differences in chemistry were observed, specifically in the different total relative bioaccumulation of Mo between amphipods exposed to sediments from two different sites. This suggests that future monitoring of chemical release during marine sediment disturbance requires the full geochemical characterisation of the substrate. Furthermore, fresh sediment and deep water should be used for future elutriate experiments, as storage of material by freeze-thawing and/or refrigeration causes mobilisation of some key trace metals such as U, V, Mo, Mn.</p>


2020 ◽  
Vol 117 ◽  
pp. 103294 ◽  
Author(s):  
Meng Feng ◽  
Wenlei Song ◽  
Jindrich Kynicky ◽  
Martin Smith ◽  
Clinten Cox ◽  
...  

1979 ◽  
Vol 16 (2) ◽  
pp. 270-289 ◽  
Author(s):  
Dieter Birk ◽  
Tapio Koljonen ◽  
R. J. Rosenberg

Rare earths (La to Lu, Y) are investigated for five Archean granitoid stocks of Kenoran age that intrude the Wabigoon volcanic–plutonic belt. Homogeneous granodiorites are characterized by low total rare earth concentrations (ΣREE), with chondrite-normalized REE patterns that show steep negative slopes, no Eu anomalies, and enrichment of Lu. A hypabyssal porphyry of possible volcanic affiliation displays similar REE patterns, but is more depleted in heavy REE. Zone plutons yield patterns of steep slope, no Eu anomalies, with or without Lu enrichment. REE concentrations decrease from monzodioritic margins, to granodioritic cores, to aplitic apophyses.These plutons carry REE concentrations similar to the Canadian Shield average, but notably lower than some published averages for granitoids. No secular change is evident for the Archean interval.ΣREE decreases during differentiation with no appreciable fractionation of heavy over light REE, until the end stages. Late differentiates suffer depletion in heavy REE by hornblende fractionation. Lu enrichment correlates with deuteric metasomatism, as evidenced by microcline megacrysts. Eu anomalies are absent because fractionation of divalent Eu is prevented by high concentrations of Sr and Ba.Quantitative source modeling should consider the complete magma history of emplacement, crystallization, and deuteric metasomatism.


Minerals ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. 32 ◽  
Author(s):  
James Hower ◽  
Evan Granite ◽  
David Mayfield ◽  
Ari Lewis ◽  
Robert Finkelman

2019 ◽  
Vol 56 (8) ◽  
pp. 857-869
Author(s):  
M.B. McClenaghan ◽  
R.C. Paulen ◽  
I.M. Kjarsgaard

A study of rare metal indicator minerals and glacial dispersal was carried out at the Strange Lake Zr – Y – heavy rare earth element deposit in northern Quebec and Labrador, Canada. The heavy mineral (>3.2 specific gravity) and mid-density (3.0–3.2 specific gravity) nonferromagnetic fractions of mineralized bedrock from the deposit and till up to 50 km down ice of the deposit were examined to determine the potential of using rare earth element and high fileld strength element indicator minerals for exploration. The deposit contains oxide, silicate, phosphate, and carbonate indicator minerals, some of which (cerianite, uraninite, fluorapatite, rhabdophane, thorianite, danburite, and aeschynite) have not been reported in previous bedrock studies of Strange Lake. Indicator minerals that could be useful in the exploration for similar deposits include Zr silicates (zircon, secondary gittinsite (CaZrSi2O7), and other hydrated Zr±Y±Ca silicates), pyrochlore ((Na,Ca)2Nb2O6(OH,F)), and thorite (Th(SiO4))/thorianite (ThO2) as well as rare earth element minerals monazite ((La,Ce,Y,Th)PO4), chevkinite ((Ce,La,Ca,Th)4(Fe,Mg)2(Ti,Fe)3Si4O22), parisite (Ca(Ce,La)2(CO3)3F2), bastnaesite (Ce(CO3)F), kainosite (Ca2(Y,Ce)2Si4O12(CO3)·H2O), and allanite ((Ce,Ca,Y)2(Al,Fe)3(SiO4)3(OH)). Rare metal indicator minerals can be added to the expanding list of indicator minerals that can be recovered from surficial sediments and used to explore for a broad range of deposit types and commodities that already include diamonds and precious, base, and strategic metals.


1989 ◽  
Vol 26 (7) ◽  
pp. 1356-1367 ◽  
Author(s):  
A. D. Fowler ◽  
L. S. Jensen

The Archean tholeiitic Kinojévis suite is characterized by an iron-enrichment trend and abundant Fe–Ti oxides in its evolved basalts, andesites, and rhyolites. The rare-earth-element (REE) patterns of the suite remain flat from the basalts through to the rhyolites, with the development of small, negative Eu anomalies. Quantitative modelling of the trace elements from little-altered samples is consistent with the mineralogy, suggesting that the suite was produced through fractional crystallization of olivine, pyroxene, plagioclase, and Fe–Ti oxides. The evolved rhyolites are interpreted as having developed by greater than 90% fractional crystallization in a high-level magma chamber.The calc-alkaline Blake River Group conformably overlies the Kinojévis rocks and is characterized by enrichment in alkalis and silica. The REE patterns are light rare-earth-element (LREE) enriched, and the felsic rocks have prominent negative Eu anomalies. Geochemical modelling shows that the suite could have developed either through fractional crystallization dominated by plagioclase and clinopyroxene or by assimilation of tonalite, coupled with fractional crystallization.


2008 ◽  
Vol 58 (4) ◽  
pp. 402-413 ◽  
Author(s):  
Takeru Moriyama ◽  
Mruganka K. Panigrahi ◽  
Dinesh Pandit ◽  
Yasushi Watanabe

1989 ◽  
Vol 26 (12) ◽  
pp. 2465-2478 ◽  
Author(s):  
O. Rouer ◽  
H. Lapierre ◽  
C. Coulon ◽  
A. Michard

The mid-Paleozoic volcanics of northern Sierra Nevada consist of the Sierra Buttes rhyolites, the Taylor basalts and andesites, and the Keddie Ridge basalt–latite–rhyolite suite. The Sierra Buttes calc-alkaline rhyolites display strong light rare-earth element enrichment and negative εNd values. The Taylor basalts and andesites in the northern Hough and Genesee blocks exhibit calc-alkaline affinities (REE rare-earth element patterns highly enriched in LREE), whereas in the southern Hough block they are tholeiitic (flat rare-earth element patterns). The abundance of silicic lavas, the low εNd values of both the Sierra Buttes and Taylor volcanics and the δ18O values of the Sierra Buttes rhyolite and Bowman Lake trondjhemite provide evidence that the northern Sierra Nevada island arc was continent based. The Keddie Ridge differentiated volcanics, characterized by high Zr, Y, Nb, K, and light rare-earth elements, are geochemically similar to a shoshonite suite. Their eruption at the end of the mid-Paleozoic volcanic episode suggests a reversal of subduction, uplift, and block faulting in the island arc.The mid-Paleozoic volcanics of the northern Sierra Nevada are thought to represent the remnant of a mature island arc because calc-alkaline rocks predominate over tholeiitic ones, the lavas display a K enrichment with time, and the volcanics are evolved in their isotopes, compared with rocks erupted in young or primitive island arcs.


Sign in / Sign up

Export Citation Format

Share Document