scholarly journals Comprehensive Quality-Aware Automated Semantic Web Service Composition

2021 ◽  
Author(s):  
◽  
Chen Wang

<p>Automated web service composition is one of the ultimate goals of service-oriented computing. It loosely couples web services to accommodate users' complex requirements. Evolutionary Computation (EC) techniques combined with AI planning have been successfully proposed to efficiently produce composite services with near-optimal Quality of Semantic Matchmaking (QoSM) and/or Quality of Service (QoS), which measure the satisfaction of the functional and non-functional requirements from users, respectively. Despite some recent progress, both the effectiveness and efficiency of existing approaches need further improvement to enhance the competitive advantage of service providers. The overall goal of this thesis is to propose novel EC-based fully automated service composition approaches that can effectively and efficiently solve challenging single-objective, multi-objective, and dynamic service composition problems.  Firstly, this thesis proposes two novel Estimation of Distribution Algorithm (EDA) based approaches (called EDA-NHM and EDA-EHM) and one memetic EDA-based approach with four different local search operators to single-objective fully automated web service composition that jointly optimizes QoSM and QoS. EDA-NHM and EDA-EHM are proposed with novel permutation-based and DAG-based representations to model the distribution of composition solutions with respect to varied service composition workflows. Two sampling techniques are also studied in EDA-NHM and EDA-EHM to effectively and efficiently sample new promising permutations and functionally valid DAGs, respectively. These two EDA-based approaches are compared to state-of-the-art works. The comparisons reveal that EDA-NHM produces better-quality composite services than EDA-EHM and the state-of-the-art works. On the other hand, EDA-EHM achieves the highest efficiency among all the competing EC-based methods, delivering moderate effectiveness. Furthermore, one proposed memetic approaches built upon EDA-NHM (called MEEDA-LOP) pushes the cutting-edge performance in terms of effectiveness and efficiency.   Secondly, this thesis studies two categories of multi-objective service composition problems: one category aims to generate a set of approximated Pareto optimal solutions for users to choose from, while the other category aims to generate multiple composite services for multiple user segments with distinctive preferences on QoSM. To effectively and efficiently handle the first category of problems, a memetic approach based on Non-dominated Sorting Genetic Algorithm II (NSGA-II), called MNSGA2-EDA, is proposed by enhancing NSGA-II with EDA-based local search. The novelty of this method lies in the innovative use of EDA for effective and efficient local improvements, rather than for global exploration. MNSGA2-EDA is compared to state-of-the-art multi-objective works, for studying its performance. We found that MNSGA2-EDA achieves much higher effectiveness and efficiency in finding Pareto optimal solutions. The second category of problems can be naturally treated as multitasking problems. Two novel multi-factorial evolutionary algorithms (called PMFEA and PMFEA-EDA) are proposed to effectively and efficiently solve this category of problems. These two algorithms implicitly or explicitly learn and share the knowledge of good solutions evolved so far for different tasks. We compare PMFEA and PMFEA-EDA with state-of-the-art works. We found that both PMFEA-EDA and PMFEA are performed at the cost of only a fraction of time compared to the single-tasking state-of-the-art works, which solve one task at a time. We also found that PMFEA-EDA yields solutions with the highest quality, confirming that learning and sharing knowledge explicitly is superior to learning and sharing knowledge implicitly.   Thirdly, this thesis studies a new dynamic service composition problem, focusing on handling stochastic service failures. We effectively handle this problem via two stages --- the design stage and the execution stage. Particularly, two accurate robustness measures are proposed based on Monte Carlo sampling and a lower bound estimation, respectively. These robustness measures are utilized in two proposed GA-based approaches (called GA-MC and GA-RE) at the design stage, to generate baseline composite solutions with high robustness. These baseline solutions can cope with the stochastic service failures robustly via a repairing process that supports continued high-quality execution of a composite service at the execution stage. Meanwhile, we propose a GA-2Stage algorithm by introducing a new adaptive evolutionary control mechanism, which supports two sequential evolutionary stages with two different fitness evaluation methods. These approaches are compared to each other to determine the most suitable method. Our experimental comparisons reveal that GA-RE algorithm with lower bound estimation outperforms GA-MC algorithm with Monte Carlo sampling estimation in finding composition solutions with high robustness, regardless of the size of the service repositories. Besides, compared to GA-RE, GA-2Stage achieves the highest efficiency with a negligible impact on the effectiveness at the execution stage, regardless of the service repositories' size.</p>

2021 ◽  
Author(s):  
◽  
Chen Wang

<p>Automated web service composition is one of the ultimate goals of service-oriented computing. It loosely couples web services to accommodate users' complex requirements. Evolutionary Computation (EC) techniques combined with AI planning have been successfully proposed to efficiently produce composite services with near-optimal Quality of Semantic Matchmaking (QoSM) and/or Quality of Service (QoS), which measure the satisfaction of the functional and non-functional requirements from users, respectively. Despite some recent progress, both the effectiveness and efficiency of existing approaches need further improvement to enhance the competitive advantage of service providers. The overall goal of this thesis is to propose novel EC-based fully automated service composition approaches that can effectively and efficiently solve challenging single-objective, multi-objective, and dynamic service composition problems.  Firstly, this thesis proposes two novel Estimation of Distribution Algorithm (EDA) based approaches (called EDA-NHM and EDA-EHM) and one memetic EDA-based approach with four different local search operators to single-objective fully automated web service composition that jointly optimizes QoSM and QoS. EDA-NHM and EDA-EHM are proposed with novel permutation-based and DAG-based representations to model the distribution of composition solutions with respect to varied service composition workflows. Two sampling techniques are also studied in EDA-NHM and EDA-EHM to effectively and efficiently sample new promising permutations and functionally valid DAGs, respectively. These two EDA-based approaches are compared to state-of-the-art works. The comparisons reveal that EDA-NHM produces better-quality composite services than EDA-EHM and the state-of-the-art works. On the other hand, EDA-EHM achieves the highest efficiency among all the competing EC-based methods, delivering moderate effectiveness. Furthermore, one proposed memetic approaches built upon EDA-NHM (called MEEDA-LOP) pushes the cutting-edge performance in terms of effectiveness and efficiency.   Secondly, this thesis studies two categories of multi-objective service composition problems: one category aims to generate a set of approximated Pareto optimal solutions for users to choose from, while the other category aims to generate multiple composite services for multiple user segments with distinctive preferences on QoSM. To effectively and efficiently handle the first category of problems, a memetic approach based on Non-dominated Sorting Genetic Algorithm II (NSGA-II), called MNSGA2-EDA, is proposed by enhancing NSGA-II with EDA-based local search. The novelty of this method lies in the innovative use of EDA for effective and efficient local improvements, rather than for global exploration. MNSGA2-EDA is compared to state-of-the-art multi-objective works, for studying its performance. We found that MNSGA2-EDA achieves much higher effectiveness and efficiency in finding Pareto optimal solutions. The second category of problems can be naturally treated as multitasking problems. Two novel multi-factorial evolutionary algorithms (called PMFEA and PMFEA-EDA) are proposed to effectively and efficiently solve this category of problems. These two algorithms implicitly or explicitly learn and share the knowledge of good solutions evolved so far for different tasks. We compare PMFEA and PMFEA-EDA with state-of-the-art works. We found that both PMFEA-EDA and PMFEA are performed at the cost of only a fraction of time compared to the single-tasking state-of-the-art works, which solve one task at a time. We also found that PMFEA-EDA yields solutions with the highest quality, confirming that learning and sharing knowledge explicitly is superior to learning and sharing knowledge implicitly.   Thirdly, this thesis studies a new dynamic service composition problem, focusing on handling stochastic service failures. We effectively handle this problem via two stages --- the design stage and the execution stage. Particularly, two accurate robustness measures are proposed based on Monte Carlo sampling and a lower bound estimation, respectively. These robustness measures are utilized in two proposed GA-based approaches (called GA-MC and GA-RE) at the design stage, to generate baseline composite solutions with high robustness. These baseline solutions can cope with the stochastic service failures robustly via a repairing process that supports continued high-quality execution of a composite service at the execution stage. Meanwhile, we propose a GA-2Stage algorithm by introducing a new adaptive evolutionary control mechanism, which supports two sequential evolutionary stages with two different fitness evaluation methods. These approaches are compared to each other to determine the most suitable method. Our experimental comparisons reveal that GA-RE algorithm with lower bound estimation outperforms GA-MC algorithm with Monte Carlo sampling estimation in finding composition solutions with high robustness, regardless of the size of the service repositories. Besides, compared to GA-RE, GA-2Stage achieves the highest efficiency with a negligible impact on the effectiveness at the execution stage, regardless of the service repositories' size.</p>


Author(s):  
Arion de Campos Jr. ◽  
Aurora T. R. Pozo ◽  
Silvia R. Vergilio

The Web service composition refers to the aggregation of Web services to meet customers' needs in the construction of complex applications. The selection among a large number of Web services that provide the desired functionalities for the composition is generally driven by QoS (Quality of Service) attributes, and formulated as a constrained multi-objective optimization problem. However, many equally important QoS attributes exist and in this situation the performance of the multi-objective algorithms can be degraded. To deal properly with this problem we investigate in this chapter a solution based in many-objective optimization algorithms. We conduct an empirical analysis to measure the performance of the proposed solution with the following preference relations: Controlling the Dominance Area of Solutions, Maximum Ranking and Average Ranking. These preference relations are implemented with NSGA-II using five objectives. A set of performance measures is used to investigate how these techniques affect convergence and diversity of the search in the WSC context.


IET Software ◽  
2016 ◽  
Vol 10 (4) ◽  
pp. 116-124 ◽  
Author(s):  
Jianxin Liao ◽  
Yang Liu ◽  
Jing Wang ◽  
Jingyu Wang ◽  
Qi Qi

2021 ◽  
Author(s):  
◽  
Yang Yu

<p>Web service composition has become a promising technique to build powerful enterprise applications by making use of distributed services with different functions. In the age of big data, more and more web services are created to deal with a large amount of data, which are called data-intensive services. Due to the explosion in the volume of data, providing efficient approaches to composing data-intensive services will become more and more important in the field of service-oriented computing. Meanwhile, as numerous web services have been emerging to offer identical or similar functionality on the Internet, web service composition is usually performed with end-to-end Quality of Service (QoS) properties which are adopted to describe the non-functional properties (e.g., response time, execution cost, reliability, etc.) of a web service. In addition, the executions of composite web services are typically coordinated by a centralized workflow engine. As a result, the centralized execution paradigm suffers from inefficient communication and a single point of failure. This is particularly problematic in the context of data-intensive processes. To that end, more decentralized and flexible execution paradigms are required for the execution of data-intensive applications.  From a computational point of view, the problems of QoS-aware data-intensive web service composition and execution can be characterised as complex, large-scale, constrained and multi-objective optimization problems. Therefore, genetic programming (GP) based solutions are presented in this thesis to address the problems. A series of simulation experiments are provided to demonstrate the performance of the proposed approaches, and the empirical observations are also described in this thesis.  Firstly, we propose a hybrid approach that integrates the local search procedure of tabu search into the global search process of GP to solving the problem of QoS-aware data-intensive web service composition. A mathematical model is developed for considering the mass data transmission across different component services in a data-intensive service composition. The experimental results show that our proposed approach can provide better performance than the standard GP approach and two traditional optimization methods.  Next, a many-objective evolutionary approach is proposed for tackling the QoS-aware data-intensive service composition problem having more than three competing quality objectives. In this approach, the original search space of the problem is reduced before a recently developed many-objective optimization algorithm, NSGA-III, is adopted to solve the many-objective optimization problem. The experimental results demonstrate the effectiveness of our approach, as well as its superiority than existing single-objective and multi-objective approaches.  Finally, a GP-based approach to partitioning a composite data-intensive service for decentralized execution is put forth in this thesis. Similar to the first problem, a mathematical model is developed for estimating the communication overhead inside a partition and across the partitions. The data and control dependencies in the original composite web service can be properly preserved in the deployment topology generated by our approach. Compared with two existing heuristic algorithms, the proposed approach exhibits better scalability and it is more suitable for large-scale partitioning problems.</p>


2021 ◽  
Author(s):  
Soheila Sadeghiram

<p>Service-oriented architecture (SOA) encourages the creation of modular applications involving Web services as the reusable components. Data-intensive Web services have emerged to manipulate and deal with the massive data emerged from technological advances and their various applications. Distributed Data-intensive Web Service Composition (DWSC) is a core of SOA, which includes the selection of data-intensive Web services from diverse locations on the network and composes them to accomplish a complicated task. As a fundamental challenge for service developers, service compositions must fulfil functional requirements and optimise Quality of Service (QoS), simultaneously. The QoS of a distributed DWSC is not only impacted by the QoS of component services and how the compositions are generated, but also by the locations of services and data transformation between services. However, existing works often neglect the impact of locations and data on service composition. The distributed DWSC has not been sufficiently studied in the literature. In this thesis, we first define the single-objective distributed DWSC that includes communication (e.g. bandwidth), Web service (execution time) and data (data cost) attributes. To this aim, we consider bandwidth information of communication links obtained using the location information of services. Based on the problem formulation, we then address the distributed DWSC problem by developing EC-based approaches. Those EC-based approaches are designed to incorporate domain-knowledge for effectively solving the distributed DWSC problem. Afterwards, we study the multi-objective distributed DWSC to satisfy different QoS requirements. In particular, the QoS-constrained distributed DWSC problem and user preferences are considered. For finding trade-off solutions for those problems, new Multi-objective Evolutionary Algorithms (MOEAs) are proposed based on the current Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Furthermore, a new problem formulation for the dynamic distributed DWSC (D2−DWSC) problem with bandwidth fluctuations is proposed. An EC-based approach is developed to solve the D2-DWSC. Finally, extensive empirical evaluations are conducted that demonstrate the high performance of our proposed methods in finding composite services with good QoS.</p>


Sign in / Sign up

Export Citation Format

Share Document