scholarly journals Integrated DNA Extraction Protocol to Avoid PCR-Inhibitors from Fecal and Environmental Samples for Next-Generation Sequencing

Author(s):  
Ricardo A González-Sánchez
Author(s):  
Tse-Yu Chen ◽  
Adam E. Vorsino ◽  
Kyle J. Kosinski ◽  
Ana L. Romero-Weaver ◽  
Eva A. Buckner ◽  
...  

2017 ◽  
Author(s):  
Taha Soliman ◽  
Sung-Yin Yang ◽  
Tomoko Yamazaki ◽  
Holger Jenke-Kodama

Structure and diversity of microbial communities are an important research topic in biology, since microbes play essential roles in the ecology of various environments. Different DNA isolation protocols can lead to data bias and can affect results of next-generation sequencing. To evaluate the impact of protocols for DNA isolation from soil samples and also the influence of individual handling of samples, we compared results obtained by two researchers (R and T) using two different DNA extraction kits: (1) MO BIO PowerSoil® DNA Isolation kit (MO_R and MO_T) and (2) NucleoSpin® Soil kit (MN_R and MN_T). Samples were collected from six different sites on Okinawa Island, Japan. For all sites, differences in the results of microbial composition analyses (bacteria, archaea, fungi, and other eukaryotes), obtained by the two researchers using the two kits, were analyzed. For both researchers, the MN kit gave significantly higher yields of genomic DNA at all sites compared to the MO kit (ANOVA; P <0.006). In addition, operational taxonomic units for some phyla and classes were missed in some cases: Micrarchaea were detected only in the MN_T and MO_R analyses; the bacterial phylum Armatimonadetes was detected only in MO_R and MO_T; and WIM5 of the phylum Amoebozoa of eukaryotes was found only in the MO_T analysis. Our results suggest the possibility of handling bias; therefore, it is crucial that replicated DNA extraction be performed by at least two technicians for thorough microbial analyses and to obtain accurate estimates of microbial diversity.


2017 ◽  
Author(s):  
Taha Soliman ◽  
Sung-Yin Yang ◽  
Tomoko Yamazaki ◽  
Holger Jenke-Kodama

Structure and diversity of microbial communities are an important research topic in biology, since microbes play essential roles in the ecology of various environments. Different DNA isolation protocols can lead to data bias and can affect results of next-generation sequencing. To evaluate the impact of protocols for DNA isolation from soil samples and also the influence of individual handling of samples, we compared results obtained by two researchers (R and T) using two different DNA extraction kits: (1) MO BIO PowerSoil® DNA Isolation kit (MO_R and MO_T) and (2) NucleoSpin® Soil kit (MN_R and MN_T). Samples were collected from six different sites on Okinawa Island, Japan. For all sites, differences in the results of microbial composition analyses (bacteria, archaea, fungi, and other eukaryotes), obtained by the two researchers using the two kits, were analyzed. For both researchers, the MN kit gave significantly higher yields of genomic DNA at all sites compared to the MO kit (ANOVA; P <0.006). In addition, operational taxonomic units for some phyla and classes were missed in some cases: Micrarchaea were detected only in the MN_T and MO_R analyses; the bacterial phylum Armatimonadetes was detected only in MO_R and MO_T; and WIM5 of the phylum Amoebozoa of eukaryotes was found only in the MO_T analysis. Our results suggest the possibility of handling bias; therefore, it is crucial that replicated DNA extraction be performed by at least two technicians for thorough microbial analyses and to obtain accurate estimates of microbial diversity.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4178 ◽  
Author(s):  
Taha Soliman ◽  
Sung-Yin Yang ◽  
Tomoko Yamazaki ◽  
Holger Jenke-Kodama

Structure and diversity of microbial communities are an important research topic in biology, since microbes play essential roles in the ecology of various environments. Different DNA isolation protocols can lead to data bias and can affect results of next-generation sequencing. To evaluate the impact of protocols for DNA isolation from soil samples and also the influence of individual handling of samples, we compared results obtained by two researchers (R and T) using two different DNA extraction kits: (1) MO BIO PowerSoil®DNA Isolation kit (MO_R and MO_T) and (2) NucleoSpin®Soil kit (MN_R and MN_T). Samples were collected from six different sites on Okinawa Island, Japan. For all sites, differences in the results of microbial composition analyses (bacteria, archaea, fungi, and other eukaryotes), obtained by the two researchers using the two kits, were analyzed. For both researchers, the MN kit gave significantly higher yields of genomic DNA at all sites compared to the MO kit (ANOVA;P < 0.006). In addition, operational taxonomic units for some phyla and classes were missed in some cases: Micrarchaea were detected only in the MN_T and MO_R analyses; the bacterial phylum Armatimonadetes was detected only in MO_R and MO_T; and WIM5 of the phylum Amoebozoa of eukaryotes was found only in the MO_T analysis. Our results suggest the possibility of handling bias; therefore, it is crucial that replicated DNA extraction be performed by at least two technicians for thorough microbial analyses and to obtain accurate estimates of microbial diversity.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 1314 ◽  
Author(s):  
Catelyn C. Nieman ◽  
Youki Yamasaki ◽  
Travis C. Collier ◽  
Yoosook Lee

Typical DNA extraction protocols from commercially available kits provide an adequate amount of DNA from a single individual mosquito sufficient for PCR-based assays. However, next-generation sequencing applications and high-throughput SNP genotyping assays exposed the limitation of DNA quantity one usually gets from a single individual mosquito. Whole genome amplification could alleviate the issue but it also creates bias in genome representation. While trying to find alternative DNA extraction protocols for improved DNA yield, we found that a combination of the tissue lysis protocol from Life Technologies and the DNA extraction protocol from Qiagen yielded a higher DNA amount than the protocol using the Qiagen or Life Technologies kit only. We have not rigorously tested all the possible combinations of extraction protocols; we also only tested this on mosquito samples. Therefore, our finding should be noted as a suggestion for improving people’s own DNA extraction protocols and not as an advertisement of a commercially available product.


2017 ◽  
Vol 177 ◽  
pp. 66-72 ◽  
Author(s):  
Aline Etelvina Casaril ◽  
Liliane Prado de Oliveira ◽  
Diego Peres Alonso ◽  
Everton Falcão de Oliveira ◽  
Suellem Petilim Gomes Barrios ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document