extraction protocol
Recently Published Documents


TOTAL DOCUMENTS

327
(FIVE YEARS 102)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Hagen M. Gegner ◽  
Nils Mechtel ◽  
Elena Heidenreich ◽  
Angela Wirth ◽  
Fabiola Garcia Cortizo ◽  
...  

Metabolic profiling harbors the potential to better understand various disease entities such as cancer, diabetes, Alzheimer's, Parkinson's disease or COVID-19. Deciphering these intricate pathways in human studies requires large sample sizes as a means of reducing variability. While such broad human studies have discovered new associations between a given disease and certain affected metabolites, i.e. biomarkers, they often provide limited functional insights. To design more standardized experiments, reduce variability in the measurements and better resolve the functional component of such dynamic metabolic profiles, model organisms are frequently used. Standardized rearing conditions and uniform sampling strategies are prerequisites towards a successful metabolomic study. However, further aspects such as the choice of extraction protocol and analytical technique can influence the outcome drastically. Here, we employed a highly standardized metabolic profiling assay analyzing 630 metabolites across three commonly used model organisms (Drosophila, mouse and Zebrafish) to find the optimal extraction protocols for various matrices. Focusing on parameters such as metabolite coverage, metabolite yield and variance between replicates we compared seven extraction protocols. We found that the application of a combination of 75% ethanol and methyl tertiary-butyl ether (MTBE), while not producing the broadest coverage and highest yields, was the most reproducible extraction protocol. We were able to determine up to 530 metabolites in mouse kidney samples, 509 in mouse liver, 422 in Zebrafish and 388 in Drosophila and discovered a core overlap of 261 metabolites in these four matrices. To enable other scientists to search for the most suitable extraction protocol in their experimental context and interact with this comprehensive data, we have integrated our data set in the open-source shiny app MetaboExtract. This will enable scientists to search for their metabolite or metabolite class of interest, compare it across the different tested extraction protocols and sample types as well as find reference concentrations.


2021 ◽  
Vol 24 (12) ◽  
pp. 1309-1315
Author(s):  
Jamsari Jamsari ◽  
Muhammad Arif Setia ◽  
Bastian Nova ◽  
Lily Syukriani ◽  
Siti Nur Aisyah ◽  
...  

2021 ◽  
Author(s):  
mpfsum not provided

RNA extraction protocol using CTAB method optimized for leaf and bud samples from Shorea curtisii. Adapted from extraction protocol for Shorea beccariana (see attached publication).


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12398
Author(s):  
Shai Shefer ◽  
Arthur Robin ◽  
Alexander Chemodanov ◽  
Mario Lebendiker ◽  
Robert Bostwick ◽  
...  

Due to the global COVID-19 pandemic, there is a need to screen for novel compounds with antiviral activity against SARS-COV-2. Here we compared chemical composition and the in vitro anti- SARS-COV-2 activity of two different Ulva sp. crude ulvan extracts: one obtained by an HCl-based and another one by ammonium oxalate-based (AOx) extraction protocols. The composition of the crude extracts was analyzed and their antiviral activity was assessed in a cytopathic effect reduction assay using Vero E6 cells. We show that the extraction protocols have a significant impact on the chemical composition, anti- SARS-COV-2 activity, and cytotoxicity of these ulvan extracts. The ulvan extract based on the AOx protocol had a higher average molecular weight, higher charge, and 11.3-fold higher antiviral activity than HCl-based extract. Our results strongly suggest that further bioassay-guided investigation into bioactivity of compounds found in Ulva sp. ulvan extracts could lead to the discovery of novel anti-SARS-CoV-2 antivirals.


2021 ◽  
Author(s):  
Sarah Romac

This DNA extraction protocol allows to get both eukaryotic and prokaryotic DNA from microalgae strains, so the microbiome diversity can be studied in cultures by using this protocol.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S287-S287
Author(s):  
Meghna Yadav ◽  
Tiffany Martinez ◽  
Isabel Regoli ◽  
Osvaldo Hernandez ◽  
Phuong Le ◽  
...  

Abstract Background The SARS-CoV-2 pandemic has demonstrated the need for streamlined workflows in high-throughput testing. In extraction-based testing, limited extraction reagents and required proprietary instrumentation may pose a bottleneck for labs. As a solution, ChromaCode developed a Direct Extraction protocol for the HDPCR™ SARS-CoV-2 Assay, distributed in accordance with the guidance on Policy for Coronavirus Disease-2019 Tests During the Public Health Emergency, Section IV.C., which allows for the processing of specimens without an extraction system. In lieu of an extraction system, the Direct Extraction protocol uses a thermal cycler to lyse and inactivate specimens which are directly added to the Polymerase Chain Reaction (PCR). Methods The Limit of Detection (LoD), Clinical Performance, and effect of Interfering Substances was determined for the Direct Extraction protocol. The LoD was established on 6 PCR platforms with dilutions of inactivated SARS-CoV-2 virus spiked into residual, negative nasopharyngeal swab (NPS) matrix. Clinical performance was assessed with 48 positive and 50 negative frozen retrospective samples using the Direct Extraction protocol compared to an external Emergency Use Authorized (EUA) comparator assays (cobas® Liat® SARS-CoV-2 & Influenza A/B assay and the Hologic Panther Fusion® SARS-CoV-2 Assay respectively) on three PCR platforms. The Direct Extraction protocol was evaluated for performance in the presence of 13 potentially interfering substances that can be present in a respiratory specimen. Results The LoD of the Direct Extraction protocol ranges from 1000 – 3000 genomic equivalents (GE)/mL. The clinical performance of the assay was 95.8% positive agreement (95% CI of 84.6% - 99.3%) and 100% negative agreement (95% CI of 90.9% - 100% or 91.1% – 100%) across all three PCR platforms tested. The viral target was detected at 3X LoD for all interferents tested. Conclusion The Direct Extraction protocol of ChromaCode’s SARS-CoV-2 Assay is a sensitive test that eliminates the need for sample extraction and performs very well against traditional extraction-based workflows. The inclusion of this protocol can reduce costs, reliance on extraction systems, and time associated with extraction-based protocols. Disclosures Meghna Yadav, Ph.D. Molecular Biology, ChromaCode Inc. (Employee, Shareholder) Tiffany Martinez, n/a, ChromaCode (Employee, Shareholder) Isabel Regoli, MS, Bioinformatics, ChromaCode (Employee, Shareholder) Osvaldo Hernandez, B.S., Molecular Biology, ChromaCode (Employee, Shareholder) Phuong Le, B.S., Biochemistry, ChromaCode (Employee, Shareholder) Heather Carolan, Masters, Computational Molecular Biology, ChromaCode (Employee, Shareholder) Brad Brown, Ph.D Biomedical Sciences, ChromaCode (Employee, Shareholder) Karen Menge, Ph.D. Biochemistry, ChromaCode (Employee, Shareholder)ChromaCode (Employee, Shareholder)


2021 ◽  
Author(s):  
Sarah Chang ◽  
Michael Russello

Laboratory protocol for DNA extraction from animal tissue with Chelex.


2021 ◽  
Author(s):  
William not provided Brazelton ◽  
H Lizethe Pendleton

Modified 2020 by H. Lizethe Pendleton from the Brazelton Lab DNA extraction protocol.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1804
Author(s):  
Daniel Plante ◽  
Julio Alexander Bran Barrera ◽  
Maude Lord ◽  
Irène Iugovaz ◽  
Neda Nasheri

Foodborne viruses such as norovirus and hepatitis A virus cause frequent outbreaks associated with the consumption of raw or undercooked oysters. Viral particles are bioaccumulated in the oyster’s digestive glands, making RNA extraction and RT-PCR detection difficult due to the complex nature of the food matrix and the presence of RT-PCR inhibitors. Herein, we have developed a viral RNA extraction protocol from raw oysters using murine norovirus (MNV) as a surrogate for human noroviruses. The method combines lysis in Tri-Reagent reagent, followed by RNA extraction using Direct-Zol purification columns and lithium chloride precipitation. Viral load quantification was performed by both qRT-PCR and droplet-digital RT-PCR. We have demonstrated that this method can efficiently remove RT-PCR inhibitors, and is sensitive enough to reliably detect viral contamination at 25 PFU/0.2 g. We have also compared the efficiency of this method with the ISO 15216-1:2017 method and Method E developed by Quang and colleagues, and observed significantly higher efficiency compared with the ISO 15216-1 method and comparable efficiency with Method E, with less steps, and shorter hands-on time.


2021 ◽  
Vol 1 (3) ◽  
pp. 94-98
Author(s):  
Bhushan Jawale ◽  
Lishoy Rodrigues ◽  
Amit Chaudhari ◽  
Manoj Patel ◽  
Neetal Patel

Sign in / Sign up

Export Citation Format

Share Document