scholarly journals Valve for two-phase fluid loop

2021 ◽  
Vol 5 (2) ◽  
pp. 82-88
Author(s):  
Z. A. Yudina ◽  
M. I. Sinichenko ◽  
A. P. Ladigin ◽  
F. K. Sin'kovskiy ◽  
A. D. Kuznetsov

Improvement of heat transfer efficiency of the spacecraft thermal control subsystem constitutes a relevant problem for today space industry. Two phase thermal control system presents the most suitable solution for this problem. Implementation of reliable thermal control loop elements constitutes one the major prerequisites for reliability of thermal control systems featuring the operating pressure of 4.8 MPa and ammonia as heat fluid. This paper presents the design and test results of manual valve and fill and drain valve to be operated within the spacecraft two phase thermal control subsystem. The paper provides considerations and detailed description of the technical solutions adopted to ensure compliance with the specification requirements such as operating pressure and plug seat leak tightness under the operating pressure and 160 open/close cycles. Valve plug torque selection criteria are described. The employed design and technical solutions as well as qualification test results have proven that the units designed feature outstanding combination of performances such as leak tightness, life cycle with ammonia as heat fluid.

2018 ◽  
Author(s):  
Jasvanth V S ◽  
Srikanth T ◽  
Abhijit A. Adoni ◽  
Jaikumar V ◽  
Amrit Ambirajan

Author(s):  
Hiroki Nagai ◽  
Hosei Nagano ◽  
Fuyuko Fukuyoshi ◽  
Hiroyuki Ogawa

The Loop Heat Pipes (LHPs) are robust, self-starting and a passive two-phase thermal control system that uses the latent heat of vaporization of an internal working fluid to transfer heat from an evaporator (the heat source) to a condenser (the heat sink). The circulation of the working fluid is accomplished by capillary pressure gradients in a fine porous wick with very small pores. LHPs are rapidly gaining acceptance in the aerospace community and several terrestrial applications are emerging as well. In the present study, a miniature LHP is investigated the thermal performance for spacecraft thermal control system. Tests will be conducted including start-up, low power, power ramp up, high power, rapid power change, and rapid sink temperature change. Finally, we want to demonstrate the potential of LHP to become the next-generation heat transfer device to cool terrestrial devices such as advanced electronic which have high power dissipations. First of all, this paper presents the influence of the gravitational forces on the LHP performance. The present tests performed under steady state condition with three different orientations (horizontal, gravity-assisted, anti-gravity).


1992 ◽  
Author(s):  
T. MIYAJI ◽  
K. MIMURA ◽  
M. KOMORI ◽  
M. FURUKAWA ◽  
Y. ISHII

2021 ◽  
pp. 15-23
Author(s):  
Artem Hodunov ◽  
Gennady Gorbenko ◽  
Pavel Gakal

Spacecraft thermal control systems based on two-phase mechanically pumped loops have advantages in terms of mass and power consumption for auxiliary needs compared to single-phase thermal control systems. However, the disadvantage of two-phase mechanically pumped loops is that when changing the heat load and heat removal conditions, when switching from single-phase to two-phase operation mode and vice versa, the amount of working fluid in the loop changes significantly, which requires the use of a large volume heat-controlled accumulator.  Therefore, determining the minimum required volume of the heat-controlled accumulator for the loop operation is an urgent task due to the need to maintain the performance of the l loop at a minimum and maximum heat loads and minimize the mass of the structure and the working fluid charged. When determining the volume of the heat-controlled accumulator, it is necessary to correctly calculate the mass of the fluid in the loop during the two-phase operation mode. The mass of the fluid depends on the void fraction, which depends significantly on the phase slip. Many models and correlations have been proposed to calculate the phase slip factor. However, they all require justification for the parameters characteristic of spacecraft thermal control systems and weightlessness conditions.   The paper presents the results of ground-based experiments, based on which the verification of different models and correlations for phase slip was performed. The validation of models and correlations for the conditions of weightlessness was performed by comparing the results with the horizontal and vertical orientation of the elements of the experimental setup. The working fluid is ammonia. The experiments showed that the best coincidence of calculation and experience is provided by Chisholm correlation. The discrepancy between the calculated and experimental values did not exceed +/-7% in the entire range of study parameters both for horizontal and vertical orientations, which allow us to recommend the Chisholm correlation for determining the coolant mass in the two-phase mechanically pumped loops for parameters characteristic of spacecraft thermal control systems, including zero-gravity conditions.


Sign in / Sign up

Export Citation Format

Share Document