Massive MIMO-Based 5G Networks: Energy Harvesting Base Stations with Minimum Storage

Author(s):  
S. Uma ◽  
V. Brinda
2017 ◽  
Vol 24 (3) ◽  
pp. 86-94 ◽  
Author(s):  
K. N. R. Surya Vara Prasad ◽  
Ekram Hossain ◽  
Vijay K. Bhargava

2018 ◽  
Vol 12 (10) ◽  
pp. 1709-1718 ◽  
Author(s):  
Monjed A. Al‐Tarifi ◽  
Mohammad S. Sharawi ◽  
Atif Shamim

Author(s):  
Fadhil Mukhlif ◽  
Kamarul Ariffin Bin Nooridin ◽  
Yousef Ali AL-Gumaei ◽  
Abdu Saif AL-Rassas

2021 ◽  
Author(s):  
Carlos Eduardo Dias Vinagre Neto ◽  
Ailton Pinto de Oliveira ◽  
Felipe Henrique Bastos e Bastos ◽  
Emerson Oliveira Junior ◽  
Aldebaro Klautau

Unmanned aerial vehicles (UAVs) are being used in many applications,such as surveillance and product delivery. Currently, manyUAVs are controlled by WiFi or proprietary radio technologies.However, it is envisioned that 5G and beyond 5G (B5G) networkscan connect the UAVs and increase the overall security due to improvedcontrol by operators and governments. Soon, UAVs willalso be used as mobile radio base stations to extend reach or improvethe network capacity. All this motivates intense research on5G technologies for supporting UAV-based applications. However,there are currently few simulation tools for testing and investigatingtelecommunication systems that involve UAV solutions. Forinstance, modern 5G networks use multiple antennas that enablebeamforming. A realistic simulation, in this case, requires not onlysupport for beamforming but also for realistic UAV trajectories,which impact the communication channel evolution over time. Toevaluate scenarios with connected UAVs, this paper presents a toolthat simulates flights in a virtual environment, gathers informationabout the channels among UAVs and the mobile network, andcalculates performance indicators regarding the communicationsystem.


2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Hope Ikoghene Obakhena ◽  
Agbotiname Lucky Imoize ◽  
Francis Ifeanyi Anyasi ◽  
K. V. N. Kavitha

AbstractIn recent times, the rapid growth in mobile subscriptions and the associated demand for high data rates fuels the need for a robust wireless network design to meet the required capacity and coverage. Deploying massive numbers of cellular base stations (BSs) over a geographic area to fulfill high-capacity demands and broad network coverage is quite challenging due to inter-cell interference and significant rate variations. Cell-free massive MIMO (CF-mMIMO), a key enabler for 5G and 6G wireless networks, has been identified as an innovative technology to address this problem. In CF-mMIMO, many irregularly scattered single access points (APs) are linked to a central processing unit (CPU) via a backhaul network that coherently serves a limited number of mobile stations (MSs) to achieve high energy efficiency (EE) and spectral gains. This paper presents key areas of applications of CF-mMIMO in the ubiquitous 5G, and the envisioned 6G wireless networks. First, a foundational background on massive MIMO solutions-cellular massive MIMO, network MIMO, and CF-mMIMO is presented, focusing on the application areas and associated challenges. Additionally, CF-mMIMO architectures, design considerations, and system modeling are discussed extensively. Furthermore, the key areas of application of CF-mMIMO such as simultaneous wireless information and power transfer (SWIPT), channel hardening, hardware efficiency, power control, non-orthogonal multiple access (NOMA), spectral efficiency (SE), and EE are discussed exhaustively. Finally, the research directions, open issues, and lessons learned to stimulate cutting-edge research in this emerging domain of wireless communications are highlighted.


Sign in / Sign up

Export Citation Format

Share Document