scholarly journals Late-successional and old-growth forest effectiveness monitoring plan for the Northwest Forest Plan.

Author(s):  
Miles Hemstrom ◽  
Thomas Spies ◽  
Craig Palmer ◽  
Ross Kiester ◽  
John Teply ◽  
...  
2005 ◽  
Author(s):  
Melinda Moeur ◽  
Thomas A. Spies ◽  
Miles Hemstrom ◽  
Jon R. Martin ◽  
James Alegria ◽  
...  

2006 ◽  
Vol 82 (3) ◽  
pp. 364-367 ◽  
Author(s):  
Thomas A Spies ◽  
Jon R Martin

The era of ecosystem management for federal forest lands in the Pacific Northwest began in 1994 with the adoption of the Northwest Forest Plan. This plan was designed to maintain and restore species and ecosystems associated with late successional and old-growth forests on over 10 million ha of federal lands in Washington, Oregon and California. The plan called for implementation monitoring, effectiveness monitoring, and validation monitoring for a variety of ecological and socio-economic components. Monitoring has become a central part of management of the federal forests in the region and managers and scientists have gained considerable experience in implementing this large and complex program. The components of the monitoring plan include late-successional/old growth vegetation, northern spotted owls, marbled murrelets, aquatic habitat and social conditions. The monitoring plan is strongly based on vegetation layer created with TM satellite imagery and on a regional grid of forest inventory plots. The lessons learned from the implementation of this monitoring plan include: 1) agencies need to devote considerable resources to insure that effective monitoring will occur at broad scales; 2) aggregation of local monitoring efforts is not a substitute for a designed regional monitoring plan; 3) vegetation structure and composition, measured with satellite imagery and inventory plots, is a cost-effective, broad-scale indicator of biological diversity; 4) some species, such as threatened and endangered species, are not necessarily covered with habitat approaches and may require population monitoring; 5) our scientific understanding of monitoring components will vary widely as will the approaches to data collection and analysis; 6) monitoring requires research support to develop and test metrics and biodiversity models; 7) links of monitoring to decision-making (adaptive management) are still being forged. Key words: aquatic ecosystems, endangered species, old-growth forests, Pacific Northwest, USA, regional ecosystem management


1999 ◽  
Author(s):  
Sarah Madsen ◽  
Diane Evans ◽  
Thomas Hamer ◽  
Paul Henson ◽  
Sherri Miller ◽  
...  

1999 ◽  
Author(s):  
Joseph Lint ◽  
Barry Noon ◽  
Robert Anthony ◽  
Eric Forsman ◽  
Martin Raphael ◽  
...  

2017 ◽  
Vol 7 (1-2) ◽  
pp. 73-107
Author(s):  
Orsolya Perger ◽  
Curtis Rollins ◽  
Marian Weber ◽  
Wiktor Adamowicz ◽  
Peter Boxall

2011 ◽  
Author(s):  
Melinda Moeur ◽  
Janet L. Ohmann ◽  
Robert E. Kennedy ◽  
Warren B. Cohen ◽  
Matthew J. Gregory ◽  
...  

2012 ◽  
Vol 163 (6) ◽  
pp. 240-246 ◽  
Author(s):  
Thomas A. Nagel ◽  
Jurij Diaci ◽  
Dusan Rozenbergar ◽  
Tihomir Rugani ◽  
Dejan Firm

Old-growth forest reserves in Slovenia: the past, present, and future Slovenia has a small number of old-growth forest remnants, as well as many forest reserves approaching old-growth conditions. In this paper, we describe some of the basic characteristics of these old-growth remnants and the history of their protection in Slovenia. We then trace the long-term development of research in these old-growth remnants, with a focus on methodological changes. We also review some of the recent findings from old-growth research in Slovenia and discuss future research needs. The conceptual understanding of how these forests work has slowly evolved, from thinking of them in terms of stable systems to more dynamic and unpredictable ones due to the influence of natural disturbances and indirect human influences. In accordance with this thinking, the methods used to study old-growth forests have changed from descriptions of stand structure to studies that address natural processes and ecosystem functions.


Sign in / Sign up

Export Citation Format

Share Document