Aboveground carbon pools in a long-term western larch spacing and thinning study in northwestern Montana, 2015

Author(s):  
Danielle F. Hayes ◽  
Michael S. Schaedel ◽  
David K. Wright ◽  
Justin S. Crotteau
Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1036
Author(s):  
Sauro Simoni ◽  
Giovanni Caruso ◽  
Nadia Vignozzi ◽  
Riccardo Gucci ◽  
Giuseppe Valboa ◽  
...  

Edaphic arthropod communities provide valuable information about the prevailing status of soil quality to improve the functionality and long-term sustainability of soil management. The study aimed at evaluating the effect of plant and grass cover on the functional biodiversity and soil characteristics in a mature olive orchard (Olea europaea L.) managed for ten years by two conservation soil managements: natural grass cover (NC) and conservation tillage (CT). The trees under CT grew and yielded more than those under NC during the period of increasing yields (years 4–7) but not when they reached full production. Soil management did not affect the tree root density. Collecting samples underneath the canopy (UC) and in the inter-row space (IR), the edaphic environment was characterized by soil structure, hydrological properties, the concentration and storage of soil organic carbon pools and the distribution of microarthropod communities. The soil organic carbon pools (total and humified) were negatively affected by minimum tillage in IR, but not UC, without a loss in fruit and oil yield. The assemblages of microarthropods benefited, firstly, from the grass cover, secondly, from the canopy effect, and thirdly, from a soil structure ensuring a high air capacity and water storage. Feeding functional groups—hemiedaphic macrosaprophages, polyphages and predators—resulted in selecting the ecotonal microenvironment between the surface and edaphic habitat.


Ecosphere ◽  
2012 ◽  
Vol 3 (5) ◽  
pp. art45 ◽  
Author(s):  
Heather D. Alexander ◽  
Michelle C. Mack ◽  
Scott Goetz ◽  
Pieter S. A. Beck ◽  
E. Fay Belshe

2010 ◽  
Vol 113-116 ◽  
pp. 1332-1335 ◽  
Author(s):  
Ning Liu ◽  
Hong Bo He ◽  
Hong Tu Xie ◽  
Zhen Bai ◽  
Xu Dong Zhang

Fertilization is one of the essential managements to maintain and increase soil organic carbon (SOC) level in agroecosystems. It has been realized that fertilizer applications influenced the turnover of labile and refractory organic carbon pools in arable soil markedly. However, the dynamic of relatively refractory lignin in response to fertilization is still kept unclear. Therefore, the impact of long-term organic fertilization on the content and degradation degree of lignin in Mollisol was investigated. Lignin monomers were released by alkaline CuO oxidation method and quantified by gas chromatography (GC). At the time scale of decades, lignin was clearly accumulated in soil and the relative accumulation of lignin in SOC was evident after long-term organic fertilizer application. Compared with the unfertilized soil, lower acid to aldehyde ratios of vanillyl and syringyl units induced by organic fertilization suggested a lower degradation degree of lignin incorporated into soil to some extent. It could be concluded that long-term organic fertilization was an effective fertilizer practice for lignin accumulation in soil and SOC sequestration in Mollisol in northeast of China.


2012 ◽  
Vol 267 ◽  
pp. 172-181 ◽  
Author(s):  
Marco Bascietto ◽  
Bruno De Cinti ◽  
Giorgio Matteucci ◽  
Alessandro Cescatti

Ecosystems ◽  
2014 ◽  
Vol 17 (7) ◽  
pp. 1138-1150 ◽  
Author(s):  
James D. M. Speed ◽  
Vegard Martinsen ◽  
Atle Mysterud ◽  
Jan Mulder ◽  
Øystein Holand ◽  
...  

2017 ◽  
Vol 63 (12) ◽  
pp. 1661-1675 ◽  
Author(s):  
P. C. Moharana ◽  
R. K. Naitam ◽  
T. P. Verma ◽  
R. L. Meena ◽  
Sunil Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document