ENA/VASP proteins: multifunctional regulators of actin cytoskeleton dynamics

10.2741/1324 ◽  
2004 ◽  
Vol 9 (1-3) ◽  
pp. 1294 ◽  
Author(s):  
Antonio, S. Sechi
2005 ◽  
Vol 72 ◽  
pp. 119-127 ◽  
Author(s):  
Tamara Golub ◽  
Caroni Pico

The interactions of cells with their environment involve regulated actin-based motility at defined positions along the cell surface. Sphingolipid- and cholesterol-dependent microdomains (rafts) order proteins at biological membranes, and have been implicated in most signalling processes at the cell surface. Many membrane-bound components that regulate actin cytoskeleton dynamics and cell-surface motility associate with PtdIns(4,5)P2-rich lipid rafts. Although raft integrity is not required for substrate-directed cell spreading, or to initiate signalling for motility, it is a prerequisite for sustained and organized motility. Plasmalemmal rafts redistribute rapidly in response to signals, triggering motility. This process involves the removal of rafts from sites that are not interacting with the substrate, apparently through endocytosis, and a local accumulation at sites of integrin-mediated substrate interactions. PtdIns(4,5)P2-rich lipid rafts can assemble into patches in a process depending on PtdIns(4,5)P2, Cdc42 (cell-division control 42), N-WASP (neural Wiskott-Aldrich syndrome protein) and actin cytoskeleton dynamics. The raft patches are sites of signal-induced actin assembly, and their accumulation locally promotes sustained motility. The patches capture microtubules, which promote patch clustering through PKA (protein kinase A), to steer motility. Raft accumulation at the cell surface, and its coupling to motility are influenced greatly by the expression of intrinsic raft-associated components that associate with the cytosolic leaflet of lipid rafts. Among them, GAP43 (growth-associated protein 43)-like proteins interact with PtdIns(4,5)P2 in a Ca2+/calmodulin and PKC (protein kinase C)-regulated manner, and function as intrinsic determinants of motility and anatomical plasticity. Plasmalemmal PtdIns(4,5)P2-rich raft assemblies thus provide powerful organizational principles for tight spatial and temporal control of signalling in motility.


2002 ◽  
Vol 22 (20) ◽  
pp. 6946-6948 ◽  
Author(s):  
Joanna Kamińska ◽  
Beata Gajewska ◽  
Anita K. Hopper ◽  
Teresa ˙Zołądek

ABSTRACT Rsp5p is an ubiquitin-protein ligase of Saccharomyces cerevisiae that has been implicated in numerous processes including transcription, mitochondrial inheritance, and endocytosis. Rsp5p functions at multiple steps of endocytosis, including ubiquitination of substrates and other undefined steps. We propose that one of the roles of Rsp5p in endocytosis involves maintenance and remodeling of the actin cytoskeleton. We report the following. (i) There are genetic interactions between rsp5 and several mutant genes encoding actin cytoskeletal proteins. rsp5 arp2, rsp5 end3, and rsp5 sla2 double mutants all show synthetic growth defects. Overexpressed wild-type RSP5 or mutant rsp5 genes with lesions of some WW domains suppress growth defects of arp2 and end3 cells. The defects in endocytosis, actin cytoskeleton, and morphology of arp2 are also suppressed. (ii) Rsp5p and Sla2p colocalize in abnormal F-actin-containing clumps in arp2 and pan1 mutants. Immunoprecipitation experiments confirmed that Rsp5p and Act1p colocalize in pan1 mutants. (iii) Rsp5p and Sla2p coimmunoprecipitate and partially colocalize to punctate structures in wild-type cells. These studies provide the first evidence for an interaction of an actin cytoskeleton protein with Rsp5p. (iv) rsp5-w1 mutants are resistant to latrunculin A, a drug that sequesters actin monomers and depolymerizes actin filaments, consistent with the fact that Rsp5p is involved in actin cytoskeleton dynamics.


2017 ◽  
Vol 352 (2) ◽  
pp. 255-264 ◽  
Author(s):  
Magdalena Blom ◽  
Katarina Reis ◽  
Johan Heldin ◽  
Johan Kreuger ◽  
Pontus Aspenström

Oncotarget ◽  
2013 ◽  
Vol 4 (2) ◽  
pp. 289-297 ◽  
Author(s):  
Johanna Rodhe ◽  
Edel Kavanagh ◽  
Bertrand Joseph

2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Juan Manuel Ramiro‐Diaz ◽  
Carlos Hiroshi Nitta ◽  
Mingma Sherpa ◽  
Laura Veronica Gonzalez Bosc

2012 ◽  
Vol 3 (5) ◽  
pp. e311-e311 ◽  
Author(s):  
E Kavanagh ◽  
P Vlachos ◽  
V Emourgeon ◽  
J Rodhe ◽  
B Joseph

2012 ◽  
Vol 125 (18) ◽  
pp. 4333-4342 ◽  
Author(s):  
V. Delorme-Walker ◽  
M. Abrivard ◽  
V. Lagal ◽  
K. Anderson ◽  
A. Perazzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document