regulation of actin cytoskeleton
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 15)

H-INDEX

16
(FIVE YEARS 2)

2023 ◽  
Vol 83 ◽  
Author(s):  
Y. Lan ◽  
Y. Liang ◽  
X. Xiao ◽  
Y. Shi ◽  
M. Zhu ◽  
...  

Abstract Hypoxia is a prominent feature of head and neck cancer. However, the oxygen element characteristics of proteins and how they adapt to hypoxia microenvironments of head and neck cancer are still unknown. Human genome sequences and proteins expressed data of head and neck cancer were retrieved from pathology atlas of Human Protein Atlas project. Then compared the oxygen and carbon element contents between proteomes of head and neck cancer and normal oral mucosa-squamous epithelial cells, genome locations, pathways, and functional dissection associated with head and neck cancer were also studied. A total of 902 differentially expressed proteins were observed where the average oxygen content is higher than that of the lowly expressed proteins in head and neck cancer proteins. Further, the average oxygen content of the up regulated proteins was 2.54% higher than other. None of their coding genes were distributed on the Y chromosome. The up regulated proteins were enriched in endocytosis, apoptosis and regulation of actin cytoskeleton. The increased oxygen contents of the highly expressed and the up regulated proteins might be caused by frequent activity of cytoskeleton and adapted to the rapid growth and fast division of the head and neck cancer cells. The oxygen usage bias and key proteins may help us to understand the mechanisms behind head and neck cancer in targeted therapy, which lays a foundation for the application of stoichioproteomics in targeted therapy and provides promise for potential treatments for head and neck cancer.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1738
Author(s):  
Bala Murali Krishna Vasamsetti ◽  
Kyongmi Chon ◽  
Juyeong Kim ◽  
Jin-A Oh ◽  
Chang-Young Yoon ◽  
...  

Organophosphate pesticides (OPPs) are one of the most widely used insecticides. OPPs exert their neurotoxic effects by inhibiting acetylcholine esterase (AChE). Most of the gross developmental abnormalities observed in OPP-treated fish, on the other hand, may not be explained solely by AChE inhibition. To understand the overall molecular mechanisms involved in OPP toxicity, we used the zebrafish (ZF) model. We exposed ZF embryos to an OPP, phosmet, for 96 h, and then analyzed developmental abnormalities and performed whole transcriptome analysis. Phenotypic abnormalities, such as bradycardia, spine curvature, and growth retardation, were observed in phosmet-treated ZF (PTZF). Whole transcriptome analysis revealed 2190 differentially expressed genes (DEGs), with 822 and 1368 significantly up-and downregulated genes, respectively. System process and sensory and visual perception were among the top biological pathways affected by phosmet toxicity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed significant enrichment of metabolic pathways, calcium signaling pathway, regulation of actin cytoskeleton, cardiac muscle contraction, drug metabolism–other enzymes, and phototransduction. Quantitative real-time PCR results of six DEGs agreed with the sequencing data expression profile trend. Our findings provide insights into the consequences of phosmet exposure in ZF, as well as an estimate of the potential risk of OPPs to off-target species.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jing Tang ◽  
Yulong Feng ◽  
Bo Zhang ◽  
Yongbao Wu ◽  
Zhanbao Guo ◽  
...  

Abstract Background Pantothenic acid deficiency (PAD) results in growth depression and intestinal hypofunction of animals. However, the underlying molecular mechanisms remain to be elucidated. Mucosal proteome might reflect dietary influences on physiological processes. Results A total of 128 white Pekin ducks of one-day-old were randomly assigned to two groups, fed either a PAD or a pantothenic acid adequate (control, CON) diet. After a 16-day feeding period, two ducks from each replicate were sampled to measure plasma parameters, intestinal morphology, and mucosal proteome. Compared to the CON group, high mortality, growth retardation, fasting hypoglycemia, reduced plasma insulin, and oxidative stress were observed in the PAD group. Furthermore, PAD induced morphological alterations of the small intestine indicated by reduced villus height and villus surface area of duodenum, jejunum, and ileum. The duodenum mucosal proteome of ducks showed that 198 proteins were up-regulated and 223 proteins were down-regulated (> 1.5-fold change) in the PAD group compared to those in the CON group. Selected proteins were confirmed by Western blotting. Pathway analysis of these proteins exhibited the suppression of glycolysis and gluconeogenesis, fatty acid beta oxidation, tricarboxylic acid cycle, oxidative phosphorylation, oxidative stress, and intestinal absorption in the PAD group, indicating impaired energy generation and abnormal intestinal absorption. We also show that nine out of eleven proteins involved in regulation of actin cytoskeleton were up-regulated by PAD, probably indicates reduced intestinal integrity. Conclusion PAD leads to growth depression and intestinal hypofunction of ducks, which are associated with impaired energy generation, abnormal intestinal absorption, and regulation of actin cytoskeleton processes. These findings provide insights into the mechanisms of intestinal hypofunction induced by PAD.


Author(s):  
Feng Yang ◽  
Qiang Liu ◽  
Yanhong Chen ◽  
Huizhen Ye ◽  
Han Wang ◽  
...  

Ovarian follicular atresia is a natural physiological process; however, the mechanism is not fully understood. In this study, quantitative proteomic and phosphoproteomic analyses of granulosa cells (GCs) in healthy (H), slightly atretic (SA), and atretic follicles (A) of porcine were performed by TMT labeling, enrichment of phosphopeptides, and liquid chromatography with tandem mass spectrometry (LC–MS/MS) analysis. In total, 6,201 proteins were quantified, and 4,723 phosphorylation sites of 1,760 proteins were quantified. In total, 24 (11 up, 13 down) and 50 (29 up, 21 down) proteins with a fold change (FC) > 5 were identified in H/SA and H/A, respectively. In addition, there were 20 (H/SA, up) and 39 (H/A, up) phosphosites with an FC > 7 that could serve as potential biomarkers for distinguishing different quality categories of follicles. Western blotting and immunofluorescence confirmed the reliability of the proteomic analysis. Some key proteins (e.g., MIF, beta catenin, integrin β2), phosphosites (e.g., S76 of caspase6, S22 and S636 of lamin A/C), pathways (e.g., apoptosis, regulation of actin cytoskeleton pathway), transcription factors (e.g., STAT5A, FOXO1, and BCLAF1), and kinases (e.g., PBK, CDK5, CDK12, and AKT3) involved in the atresia process were revealed via further analysis of the differentially expressed proteins (DEPs) and phosphorylated proteins (DEPPs). Further study showed that mutant caspase6 Ser76 to Ala increased the ratios of cleaved caspase6/caspase6 and cleaved caspase3/caspase3 and dephosphorylation of caspase6 at Ser76 increased cell apoptotic rate, a new potential pathway of follicular atresia. Collectively, the proteomic and phosphoproteomic profiling and functional research in the current study comprehensively analyzed the dynamic changes in protein expression and phosphorylation during follicular atresia and provided some new explanations regarding the regulation of this process.


2020 ◽  
Author(s):  
Tianyi Wang ◽  
Bingxin Zhang ◽  
Danhui Li ◽  
Xiaoli Qi ◽  
Chijin Zhang

The initiation of atopic dermatitis (AD) typically happens very early in life, but most of our understanding of AD is derived from studies on AD patients in adult. The aim of this study was to identify gene signature speficic to pediatric AD comapred to adult AD. The gene expression profiles of four datasets (GSE32924, GSE36842, GSE58558, and GSE107361) were downloaded from the GEO database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed, and protein-protein interaction (PPI) network was constructed by Cytoscape software. Total 654 differentially expressed genes (DEGs) (394 up-regulated and 260 down-regulated) were identified in pediatric AD samples with adult AD samples as control. The up-regulated DEGs were significantly enriched in the migration and chemotaxis of granulocyte and neutrophil, while down-regulated DEGs were significantly enriched in biological adhesion. KEGG pathway analysis showed that up-regulated DEGs participated in chemokine signaling pathway while down-regulated DEGs participated in adherens junction, Focal adhesion, Regulation of actin cytoskeleton. The top 10 hub genes, GAPDH, EGFR, ACTB, ESR1, CDK1, CXCL8, CD44, KRAS, PTGS2, SMC3 were involved in chemokine signaling pathway, cytokine-cytokine receptor interaction, interleukin-17 signaling pathway, and regulation of actin cytoskeleton. In conclusion, we identified DEGs and hub genes involved in pediatric AD, which might be used as therapeutic targets and diagnostic biomarkers for pediatric AD.


2020 ◽  
Author(s):  
Jing Tang ◽  
Yulong Feng ◽  
Bo Zhang ◽  
Yongbao Wu ◽  
Zhanbao Guo ◽  
...  

Abstract Background: Pantothenic acid deficiency (PAD) results in growth depression and intestinal hypofunction of animals. However, the underlying mechanisms remain to be established. Mucosal proteome might reflect dietary influences on physiological processes.Results: A total of 128 one-day-old Pekin ducks were divided into two groups, with 8 replicates and 8 birds per replicate. All the ducks were fed either a PAD or a pantothenic acid adequate (control, CON) diet. After a 16-day feeding period, two ducks from each replicate were sampled to measure plasma parameters, intestinal morphology, and mucosal proteome. High mortality, growth retardation, fasting hypoglycemia, reduced plasma insulin, and oxidative stress were observed in the PAD group compared to the CON group. Furthermore, PAD induced morphological alterations of the small intestine indicated by reduced villus height and villus surface area of duodenum, jejunum, and ileum. The duodenum mucosal proteome of ducks showed that 198 proteins were upregulated and 223 proteins were downregulated (> 1.5-fold change) in the PAD group compared to those in the CON group. Selected proteins were confirmed by Western blotting. Pathway analysis of these proteins exhibited the suppression of glycolysis and gluconeogenesis, fatty acid beta oxidation, tricarboxylic acid cycle, oxidative phosphorylation, oxidative stress, and intestinal absorption in the PAD group, indicating impaired energy generation and abnormal intestinal absorption. We also show that nine out of eleven proteins involved in regulation of actin cytoskeleton were upregulated by PAD, probably indicates reduced intestinal integrity.Conclusion: PAD leads to growth depression and intestinal hypofunction of ducks, which are associated with impaired energy generation, abnormal intestinal absorption, and regulation of actin cytoskeleton processes. These findings provide insights into the mechanisms of intestinal mucosa metabolic disorders due to PAD.


2020 ◽  
Author(s):  
Feng Yang ◽  
Qiang Liu ◽  
Yanhong Chen ◽  
Huizhen Ye ◽  
Han Wang ◽  
...  

AbstractOvarian follicular atresia is a natural physiological process; however, the mechanism is not fully understood. In this study, quantitative proteomic and phosphoproteomic analyses of granulosa cells (GC) in healthy (H), slightly atretic (SA), and atretic follicles (A) of porcine were performed by TMT labeling, enrichment of phosphopeptides and LC-MS/MS analysis. In total, 6,201 proteins were quantified and 4,723 phosphorylation sites of 1,760 proteins were quantified. In total, 24 (11 up, 13 down) and 50 (29 up, 21 down) proteins with a fold change (FC) > 5 were identified in H/SA and H/A, respectively. In addition, there were 20 (H/SA, up) and 39 (H/A, up) phosphosites with an FC > 7, that could serve as potential biomarkers for distinguishing different quality categories of follicles. Western blotting and immunofluorescence confirmed the reliability of the proteomic analysis. Some key proteins (e.g., MIF, beta catenin, integrin β2), phosphosites (e.g., S76 of caspase6, S22 and S636 of lamin A/C), pathways (e.g., apoptosis, regulation of actin cytoskeleton pathway), transcription factors (e.g., STAT5A, FOXO1, and BCLAF1), and kinases (e.g., PBK, CDK5, CDK12, AKT3) involved in atresia process were revealed via further analysis of the differentially expressed proteins (DEPs) and phosphorylated proteins (DEPPs). Collectively, the proteomic and phosphoproteomic profiling and functional research in the current study comprehensively analyzed the dynamic changes in protein expression and phosphorylation during follicular atresia and provided some new explanations regarding the regulation of this process.


2020 ◽  
Author(s):  
Jing Tang ◽  
Yulong Feng ◽  
Bo Zhang ◽  
Yongbao Wu ◽  
Zhanbao Guo ◽  
...  

Abstract Background: Pantothenic acid deficiency (PAD) results in growth depression and intestinal hypofunction of animals. However, the underlying mechanisms remain to be established. We investigated intestinal mucosal proteome changes induced by PAD in ducks to explain its effects on growth and intestine. Results: A total of 128 one-day-old Pekin ducks were divided into two groups, with 8 replicates and 8 birds per replicate. All the ducks were fed either a PAD or a pantothenic acid adequate (control, CON) diet for 16 days. High mortality, growth retardation, fasting hypoglycemia, reduced plasma insulin, and oxidative stress were observed in the PAD group compared to the CON group. Furthermore, PAD induced morphological alterations of the small intestine indicated by reduced villus height and villus surface area of duodenum, jejunum, and ileum. The duodenum mucosal proteome of ducks showed that 198 proteins were upregulated and 223 proteins were downregulated (> 1.5-fold change) in the PAD group compared to those in the CON group. Pathway analysis of these proteins exhibited the suppression of glycolysis and gluconeogenesis, fatty acid beta oxidation, tricarboxylic acid cycle, oxidative phosphorylation, oxidative stress, and intestinal absorption in the PAD group, indicating impaired energy generation and abnormal intestinal absorption. We also show that nine out of eleven proteins involved in regulation of actin cytoskeleton were upregulated by PAD, probably indicates reduced intestinal integrity. Conclusion: PAD leads to growth depression and intestinal hypofunction of ducks, which are associated with impaired in energy generation, abnormal intestinal absorption, and regulation of actin cytoskeleton processes. These findings have important implications for understanding the effect of PAD on intestines.


2020 ◽  
Author(s):  
Jing Tang ◽  
Yulong Feng ◽  
Bo Zhang ◽  
Yongbao Wu ◽  
Zhanbao Guo ◽  
...  

Abstract Background Pantothenic acid deficiency (PAD) results in growth depression and intestinal hypofunction of animals. The underlying mechanisms, however, remain to be established and an overview of molecular alterations is still lacking. We investigated intestinal mucosal proteome changes induced by PAD in ducks to explain its effects on growth and intestine. Methods A total of 128 one-day-old Pekin ducks were divided into two groups, with 8 replicates and 8 birds per replicate. All the ducks were fed either a PAD or a pantothenic acid adequate (control, CON) diet for 16 days. Results High mortality, growth retardation, fasting hypoglycemia, reduced plasma insulin, and oxidative stress were observed in the PAD group compared to the CON group. Furthermore, PAD induced morphological alterations of the small intestine indicated by reduced villus height and villus surface area of duodenum, jejunum, and ileum. The duodenum mucosal proteome of ducks showed that 198 proteins were upregulated and 223 proteins were downregulated (> 1.5-fold change) in the PAD group compared to those in the CON group. Pathway analysis of these proteins exhibited the suppression of glycolysis and gluconeogenesis, fatty acid beta oxidation, tricarboxylic acid cycle, oxidative phosphorylation, oxidative stress, and intestinal absorption in the PAD group, indicating impaired energy generation and abnormal intestinal absorption. We also show that nine out of eleven proteins involved in regulation of actin cytoskeleton were upregulated by PAD, probably indicates reduced intestinal integrity. Conclusion PAD leads to growth depression and intestinal hypofunction of ducks, which are associated with impaired in energy generation, abnormal intestinal absorption, and regulation of actin cytoskeleton processes. These findings contribute to our understanding of the mechanisms of intestinal mucosa metabolic disorders due to PAD.


Sign in / Sign up

Export Citation Format

Share Document