Catenary Behaviour in Concrete Slabs: Experimental and Numerical Investigation of the Structural Behaviour

2013 ◽  
Vol 100 (5) ◽  
pp. 276-282
Author(s):  
Dirk Gouverneur ◽  
Robby Caspeele ◽  
Luc Taerwe
Author(s):  
Yuan Wang ◽  
Zheming Zhu ◽  
Zhangtao Zhou ◽  
Heping Xie

2020 ◽  
Vol 221 ◽  
pp. 111058 ◽  
Author(s):  
Antonio Bilotta ◽  
Alberto Compagnone ◽  
Laura Esposito ◽  
Emidio Nigro

2016 ◽  
Vol 711 ◽  
pp. 588-595
Author(s):  
Emran Baharudin ◽  
Luke Bisby ◽  
Tim Stratford

The historically good performance of concrete structures in real fires, and the lack of urgent drivers for the concrete industry to support research on the fire performance of concrete structures, means that research on the full frame response of concrete buildings to fires has received much less attention than for steel-framed structures. However, a credible understanding of, and ability to model, the response of concrete structures under fire exposure is crucial to make further progress in the field of structural fire engineering, and to make best use of the flexibility enabled by performance-based fire codes. This paper presents a computational study on the structural behaviour of reinforced concrete slabs during fire tests undertaken by Zhang et al.[16]. The distribution of stresses in the slabs is discussed, as is the need for further research to better understand structural response during fire. Amongst other factors, the assumed tensile strength of the concrete is crucial to accurately predict response. The results corroborate the existing consensus that concrete slabs in real buildings can, in some cases, withstand fires for longer than expected; this is due to mobilisation of membrane actions, amongst other factors.


2021 ◽  
Vol 50 (1) ◽  
pp. 227-238
Author(s):  
Yanuar Haryanto ◽  
Nanang Gunawan Wariyatno ◽  
Hsuan-Teh Hu ◽  
Ay Lie Han ◽  
Banu Ardi Hidayat

Reinforced concrete is perhaps the most widely used building material in the world. However, the materials used for reinforcement of concrete i.e. steel is quite expensive and scarcely available in the developing world. As a result, bamboo is considered to be a cheaper replacement with high tensile strength. This research investigated the structural behaviour of bamboo-reinforced concrete slabs used for footplate foundation subjected to concentrated load. For this purpose, four different reinforced concrete slab panels were developed and analyzed. The influence of replacing steel with bamboo for the reinforcement of concrete slabs on their structural behaviour was assessed by determining the load-deflection characteristics, the ultimate load, the stiffness, the ductility, the cracking pattern, and the energy absorption capacity. The results showed that in comparison to steel reinforced concrete slabs, the strength of 82% can be acquired by the bamboo reinforced slabs. Furthermore, ductility demonstrated by the two types of specimens was almost equivalent i.e. up to 93%. Those indicated that the structural behaviour demonstrated by bamboo reinforced slabs is quite comparable to that of steel reinforced concrete slabs. Therefore, bamboo can prove to be a promising substitute for steel in concrete reinforcement. Future studies may further examine this opportunity.


2018 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
Abbas Haraj Mohammed ◽  
Khattab Saleem Abdul-Razzaq ◽  
Taha Khalid Mohammedali ◽  
Dia Eddin Nassani K. ◽  
Ali K. Hussein

Post-Tensioned (PT) method is a widely used technique to prevent cracking and to minimize the deflection which is resulted by loads. In this method, stress is applied after concrete placing and reach adequate hardening and strength. This paper investigates the structural behaviour of PT two-way concrete slabs. The main objective of this study involves a detailed flexural behavior analytical investigation of PT concrete two-way slab with the different bonded tendon layout. This will be achieved by non-linear Finite Element (FE) analysis programs method, to choose the most effective and optimum position of tendon layout with different number of tendons and applied load on the concrete two-way slab. A parametric study was conducted to investigate the effect of tendons layout on the overall behavior of post-tensioned two-way concrete slab. The result obtained from finite element analysis showed that the failure load in PT in both directions increased about 89 % as compared with slab PT in one direction.


Author(s):  
Thomas Thienpont ◽  
Ruben Van Coile ◽  
Robby Caspeele ◽  
Wouter De Corte

<p>In structural fire engineering, there is a growing trend towards the use of performance based approaches to evaluate structural behaviour during or after a fire. Consequently, there is a need for an increased level of confidence in properties of construction materials used in these performance based approaches. Both steel and concrete have been experimentally observed to show a dispersal in the value of their respective structural strengths, at room temperature, but more significantly at high temperatures. In this paper the influence of three temperature dependent strength retention models for reinforcement steel on the bending moment capacity of simply supported reinforced concrete slabs exposed to a standardized fire is analysed. The results show that the structural response of reinforced concrete slabs strongly depends on the chosen probabilistic model, thus highlighting the importance of appropriate model selection.</p>


Sign in / Sign up

Export Citation Format

Share Document