Time-Dependent Bending Moment Analysis for Pile-Raft Foundation of Super Tall Buildings

2015 ◽  
Vol 105 (39) ◽  
pp. 1-8
Author(s):  
Shehong Liu ◽  
Juyun Yuan ◽  
Xin Zhao
2018 ◽  
Vol 14 (1) ◽  
pp. 6057-6061 ◽  
Author(s):  
Padmanaban M S ◽  
J Sreerambabu

A piled raft foundation consists of a thick concrete slab reinforced with steel which covers the entire contact area of the structure, in which the raft is supported by a group of piles or a number of individual piles. Bending moment on raft, differential and average settlement, pile and raft geometries are the influencing parameters of the piled raft foundation system. In this paper, a detailed review has been carried out on the issues on the raft foundation design. Also, the existing design procedure was explained.


2021 ◽  
Vol 11 (11) ◽  
pp. 5031
Author(s):  
Wooseok Kim ◽  
Jeffrey A. Laman ◽  
Farzin Zareian ◽  
Geunhyung Min ◽  
Do Hyung Lee

Although integral abutment bridges (IABs) have become a preferred construction choice for short- to medium-length bridges, they still have unclear bridge design guidelines. As IABs are supported by nonlinear boundaries, bridge geometric parameters strongly affect IAB behavior and complicate predicting the bridge response for design and assessment purposes. This study demonstrates the effect of four dominant parameters: (1) girder material, (2) bridge length, (3) backfill height, and (4) construction joint below girder seats on the response of IABs to the rise and fall of AASHTO extreme temperature with time-dependent effects in concrete materials. The effect of factors influencing bridge response, such as (1) bridge construction timeline, (2) concrete thermal expansion coefficient, (3) backfill stiffness, and (4) pile-soil stiffness, are assumed to be constant. To compare girder material and bridge geometry influence, the study evaluates four critical superstructure and substructure response parameters: (1) girder axial force, (2) girder bending moment, (3) pile moment, and (4) pile head displacement. All IAB bridge response values were strongly related to the four considered parameters, while they were not always linearly proportional. Prestressed concrete (PSC) bridge response did not differ significantly from the steel bridge response. Forces and moments in the superstructure and the substructure induced by thermal movements and time-dependent loads were not negligible and should be considered in the design process.


2020 ◽  
Vol 42 (1) ◽  
pp. 1-17
Author(s):  
Shivanand Mali ◽  
Baleshwar Singh

AbstractIn a piled-raft foundation, the interaction between structural elements and soil continuum can be simulated very precisely by numerical modeling. In the present study, 3D finite element model has been used to examine the settlement, load-sharing, bending moment, and shear force behavior of piled-raft foundation on different soil profiles for different load configurations and pile-raft configurations (PRCs). The model incorporates the pile-to-soil and raft-to-soil interactions by means of interface elements. The effect of parameters such as pile spacing and raft thickness are also studied. For any soil profile, larger pile spacing is observed to be more efficient in reducing the average settlement and enhancing the load-sharing coefficient. The smaller pile spacing is observed to be efficient in reducing the differential settlement. For any soil profile, the behavior of piled-raft foundation is significantly affected by the PRCs and load configurations. Furthermore, the raft thickness has significant effect on settlement, bending moment, and shears force. Thus, the results of the present study can be used as guidelines for analyzing and designing large piled-raft foundation.


2011 ◽  
Vol 261-263 ◽  
pp. 1578-1583
Author(s):  
Yong Le Li ◽  
Jiang Feng Wang ◽  
Qian Wang ◽  
Kun Yang

based on the finite element method of superstructure-the pile raft foundation-the foundation soil action and interaction are studied. Research shows that the common function is considered, fundamental overall settlement and differential settlement with the increase of floor of a nonlinear trend. The influence of superstructure form is bigger for raft stress, the upper structure existing in secondary stress, and the bending moment and axial force than conventional design method slants big; With the increase of the floors, pile load sharing ratio is reduced gradually,but soil load sharing ratio is increased. Along with the increase of the upper structure stiffness, the load focused on corner and side pile; Increasing thickness of raft, can reduce the certain differential settlement and foundation average settlement, thus reducing the upper structure of secondary stress and improving of foundation soil load sharing ratio, at the same time the distribution of counterforce on the pile head is more uneven under raft, thus requiring more uneven from raft stress, considering the piles under raft and the stress of soils to comprehensive determines a reasonable raft thickness, which makes the design safety economy. As the foundation soil modulus of deformation of foundation soil improvement, sharing the upper loads increases, counterforce on the pile head incline to average, raft maximum bending moment decrease gradually.


2014 ◽  
Vol 1025-1026 ◽  
pp. 918-921 ◽  
Author(s):  
Yong Chul Kim ◽  
Sung Won Yoon

The results of wind tunnel experiments were used to conduct time history analyses of three conventional square cross-section tall buildings with different structural systems. The primary purpose of the study was the direct comparison of the effects of the wind loads on the steel tall buildings. Time history analyses were conducted by applying local wind forces to the center of each floor. The results showed that, although the bending moments in the ground-level column on the two principal axes were different, the peak normal stresses were almost the same regardless of the structural systems. Similar observations were made regarding the tip displacements. Furthermore, analyses for the various loading conditions revealed that the contribution of the bending moment in the across-wind direction was the largest, followed by that in the along-wind direction. The ratio of the peak normal stresses for different loading conditions were observed to be almost the same regardless of the structural systems.


2020 ◽  
Vol 26 (4) ◽  
pp. 161-172
Author(s):  
Abeer A. A Hanash ◽  
Mahmoud D. Ahmed ◽  
Abdulmotalib I. Said

This research shows the experimental results of the bending moment in a flexible and rigid raft foundation rested on dense sandy soil with different embedded depth throughout 24 tests. A physical model of dimensions (200mm*200mm) and (320) mm in height was constructed with raft foundation of (10) mm thickness for flexible raft and (23) mm for rigid raft made of reinforced concrete. To imitate the seismic excitation shaking table skill was applied, the shaker was adjusted to three frequencies equal to (1Hz,2Hz, and 3Hz) and displacement magnitude of (13) mm, the foundation was located at four different embedment depths (0,0.25B = 50mm,0.5B = 100mm, and B = 200mm), where B is the raft width. Generally, the maximum bending moment decreased with increasing the embedment depth from zero to B, by (75%,41%, and 43%) for the flexible raft under (1, 2 and 3) Hz respectively, for the rigid raft the maximum bending moment decreased by (62%, and 37%) under (1and 2) Hz respectively, for 3Hz excitation frequency, the direction of behavior wasn't the same for the case of the rigid raft foundation as the maximum bending moment increased with increasing the embedment depth from zero to (0.25B,0.5B and B) by (142% , 268% and 5%) compared with the surface raft foundation.


Author(s):  
B. G. S. T. Gamage ◽  
B. Kiriparan ◽  
B. Waduge ◽  
W. J. B. S. Fenrnado ◽  
P. Mendis

Sign in / Sign up

Export Citation Format

Share Document