soil load
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 1)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 83
Author(s):  
Rhodri Harfoot ◽  
Deborah B. Y. Yung ◽  
William A. Anderson ◽  
Cervantée E. K. Wild ◽  
Nicolene Coetzee ◽  
...  

The arrival of SARS-CoV-2 to Aotearoa/New Zealand in February 2020 triggered a massive response at multiple levels. Procurement and sustainability of medical supplies to hospitals and clinics during the then upcoming COVID-19 pandemic was one of the top priorities. Continuing access to new personal protective equipment (PPE) was not guaranteed; thus, disinfecting and reusing PPE was considered as a potential alternative. Here, we describe part of a local program intended to test and implement a system to disinfect PPE for potential reuse in New Zealand. We used filtering facepiece respirator (FFR) coupons inoculated with SARS-CoV-2 or clinically relevant multidrug-resistant pathogens (Acinetobacter baumannii Ab5075, methicillin-resistant Staphylococcus aureus USA300 LAC and cystic-fibrosis isolate Pseudomonas aeruginosa LESB58), to evaluate the potential use of ultraviolet-C germicidal irradiation (UV-C) or dry heat treatment to disinfect PPE. An applied UV-C dose of 1000 mJ/cm2 was sufficient to completely inactivate high doses of SARS-CoV-2; however, irregularities in the FFR coupons hindered the efficacy of UV-C to fully inactivate the virus, even at higher UV-C doses (2000 mJ/cm2). Conversely, incubating contaminated FFR coupons at 65 °C for 30 min or 70 °C for 15 min, was sufficient to block SARS-CoV-2 replication, even in the presence of mucin or a soil load (mimicking salivary or respiratory secretions, respectively). Dry heat (90 min at 75 °C to 80 °C) effectively killed 106 planktonic bacteria; however, even extending the incubation time up to two hours at 80 °C did not completely kill bacteria when grown in colony biofilms. Importantly, we also showed that FFR material can harbor replication-competent SARS-CoV-2 for up to 35 days at room temperature in the presence of a soil load. We are currently using these findings to optimize and establish a robust process for decontaminating, reusing, and reducing wastage of PPE in New Zealand.


2021 ◽  
Vol 7 (1) ◽  
pp. 11558-11579
Author(s):  
Carlos Eduardo dos Santos ◽  
Emiliana de Souza Rezende Guedes ◽  
Euler de Paula Leite Rocha ◽  
Gabriel Paiva Lessa Lima ◽  
Geverson de Jesus Moura ◽  
...  
Keyword(s):  

2019 ◽  
Vol 186 ◽  
pp. 128-134 ◽  
Author(s):  
Moacir Tuzzin de Moraes ◽  
Felipe Bonini da Luz ◽  
Henrique Debiasi ◽  
Julio Cezar Franchini ◽  
Vanderlei Rodrigues da Silva
Keyword(s):  

Sugar Tech ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 153-161 ◽  
Author(s):  
Allan Charlles Mendes de Sousa ◽  
Camila Viana Vieira Farhate ◽  
Zigomar Menezes de Souza ◽  
José Luiz Rodrigues Torres ◽  
Reginaldo Barboza da Silva

2017 ◽  
Vol 83 (16) ◽  
Author(s):  
Eric Moorman ◽  
Naim Montazeri ◽  
Lee-Ann Jaykus

ABSTRACT Human norovirus (NoV) is the leading cause of acute gastroenteritis worldwide. Persistence on surfaces and resistance to many conventional disinfectants contribute to widespread transmission of norovirus. We examined the efficacy of neutral electrolyzed water (NEW; pH 7) for inactivation of human NoV GII.4 Sydney in suspension (ASTM method 1052-11) and on stainless steel surfaces (ASTM method 1053-11) with and without an additional soil load. The impact of the disinfectant on viral capsid was assessed using reverse transcriptase quantitative PCR (RT-qPCR; with an RNase pretreatment), SDS-PAGE, transmission electron microscopy, and a histo-blood group antigen (HBGA) receptor-binding assay. These studies were done in parallel with those using Tulane virus (TuV), a cultivable human NoV surrogate. Neutral electrolyzed water at 250 ppm free available chlorine produced a 4.8- and 0.4-log10 reduction in NoV genome copy number after 1 min in suspension and on stainless steel, respectively. Increasing the contact time on surfaces to 5, 10, 15, and 30 min reduced human NoV genomic copies by 0.5, 1.6, 2.4, and 5.0 log10 and TuV infectious titers by 2.4, 3.0, 3.8, and 4.1 log10 PFU, respectively. Increased soil load effectively eliminated antiviral efficacy regardless of testing method and virus. Exposure to NEW induced a near complete loss of receptor binding (5 ppm, 30 s), degradation of VP1 major capsid protein (250 ppm, 5 min), and increased virus particle aggregation (150 ppm, 30 min). Neutral electrolyzed water at 250 ppm shows promise as an antinoroviral disinfectant when used on precleaned stainless steel surfaces. IMPORTANCE Norovirus is the leading cause of acute viral gastroenteritis worldwide. Transmission occurs by fecal-oral or vomitus-oral routes. The persistence of norovirus on contaminated environmental surfaces exacerbates its spread, as does its resistance to many conventional disinfectants. The purpose of this research was to evaluate the antinoroviral efficacy of neutral electrolyzed water (NEW), a novel chlorine-based disinfectant that can be used at reduced concentrations, making it more environmentally friendly and less corrosive than bleach. An industrial-scale electrochemical activation device capable of producing relatively stable electrolyzed water at a wide pH range was used in this study. Experiments showed that 250 ppm NEW effectively eliminated (defined as a 5-log10 reduction) human norovirus GII.4 Sydney (epidemic strain) on clean stainless steel surfaces after a 30-min exposure. Supporting studies showed that, like bleach, NEW causes inactivation by disrupting the virus capsid. This product shows promise as a bleach alternative with antinoroviral efficacy.


2017 ◽  
Vol 169 ◽  
pp. 146-151 ◽  
Author(s):  
André Somavilla ◽  
Paulo Ivonir Gubiani ◽  
José Miguel Reichert ◽  
Dalvan José Reinert ◽  
Anderson Luiz Zwirtes

Sign in / Sign up

Export Citation Format

Share Document