scholarly journals Optimization in a realistic structural engineering context: redesign of the Market Hall in Ghent

2021 ◽  
Author(s):  
Wouter Dillen ◽  
Geert Lombaert ◽  
Ruben Mertens ◽  
Hanne Van Beurden ◽  
Dirk Jaspaert

<p>Numerical optimization has a large potential in the context of structural design, but practical applications remain scarce. Even metaheuristic algorithms, which are easy to use, are rarely adopted in practice. Possible explanations are the fact that for problems with many design variables, metaheuristic algorithms converge slowly, and that structural optimization often leads to very complex structures, resulting in a high construction cost. The aim of this paper is to illustrate the potential of numerical optimization in a realistic design context. The focus is on the steel structure of the Ghent Market Hall, which is redesigned using a genetic algorithm. The structural member groups from the original design are maintained, such that the number of design variables is sufficiently low, and that the complexity of the design remains limited. Using this approach, a design is obtained that consumes 15 % less material than the original design.</p>

2019 ◽  
Vol 11 (3) ◽  
pp. 1-11
Author(s):  
Omar Andres Carmona Cortes ◽  
Josenildo Costa da Silva

Unconstrained numerical problems are common in solving practical applications that, due to its nature, are usually devised by several design variables, narrowing the kind of technique or algorithm that can deal with them. An interesting way of tackling this kind of issue is to use an evolutionary algorithm named Genetic Algorithm. In this context, this work is a tutorial on using real-coded genetic algorithms for solving unconstrained numerical optimization problems. We present the theory and the implementation in R language. Five benchmarks functions (Rosenbrock, Griewank, Ackley, Schwefel, and Alpine) are used as a study case. Further, four different crossover operators (simple, arithmetical, non-uniform arithmetical, and Linear), two selection mechanisms (roulette wheel and tournament), and two mutation operators (uniform and non-uniform) are shown. Results indicate that non-uniform mutation and tournament selection tend to present better outcomes.


2000 ◽  
Author(s):  
R. J. Yang ◽  
C. H. Tho ◽  
C. C. Gearhart ◽  
Y. Fu

Abstract This paper presents an approach, based on numerical optimization techniques, to identify an ideal (5 star) crash pulse and generate a band of acceptable crash pulses surrounding that ideal pulse. This band can be used by engineers to quickly determine whether a design will satisfy government and corporate safety requirements, and whether the design will satisfy the requirements for a 5 star crash rating. A piecewise linear representation of the crash pulse with two plateaus is employed for its conceptual simplicity and because such a pulse has been shown to be sufficient for reproducing occupant injury behavior when used as input into MADYMO models. The piecewise linear crash pulse is parameterized with 7 design variables (5 for time domain and 2 for acceleration domain) in the optimization process. A series of sample runs are conducted to validate that pulses falling within the acceptable crash pulse band do in fact satisfy 5 star requirements.


2003 ◽  
Vol 40 (01) ◽  
pp. 42-48
Author(s):  
Chang Doo Jang ◽  
Ho Kyung Kim ◽  
Ha Cheol Song

A surface effect ship is known to be comparable to a high-speed ship. For the structural design of surface effect ships, advanced design methods are needed which can reflect the various loading conditions different from those of conventional ships. Also, minimum weight design is essential because hull weight significantly affects the lift, thrust powering and high-speed performance. This paper presents the procedure of optimum structural design and a computer program to minimize the hull weight of surface effect ships built of composite materials. By using the developed computer program, the optimum structural designs for three types of surface effect ships—built of sandwich plate only, stiffened single skin plate only, and both plates—are carried out and the efficiency of each type is investigated in terms of weight. The computer program, developed herein, successfully reduced the hull weight of surface effect ships by 15–30% compared with the original design. Numerical results of optimum structural designs are presented and discussed.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Kleio Avrithi ◽  
Bilal M. Ayyub

Nuclear safety-piping is designed according to the ASME Boiler and Pressure Vessel Code, Sections III, NB-, NC-, and ND-3600 that use the allowable stress design method (ASD). The potential use instead of reliability-based design equations for nuclear piping could benefit the structural design by providing, among others, consistent reliability levels for piping. For the development of such equations, not only the probabilistic characteristics of the design variables are needed, but also the quantification of the uncertainties introduced by the strength models that are used in order to estimate the resistance of pipes subjected to different loadings. This paper evaluates strength models, and therefore provides necessary information for the reliability-based design of pipes for burst or yielding due to internal pressure and for excessive bending.


2018 ◽  
Vol 18 (2) ◽  
pp. 239-252 ◽  
Author(s):  
Rawa Hamed M. Al-Kalali

This paper present an investigation of the collapse load in cylinder shell under uniformexternal hydrostatic pressure with optimum design using finite element method viaANSYS software. Twenty cases are studied inclusive stiffeners in longitudinal and ringstiffeners. Buckling mode shape is evaluated. This paper studied the optimum designgenerated by ANSYS for thick cylinder with external hydrostatic pressure. The primarygoal of this paper was to identify the improvement in the design of cylindrical shell underhydrostatic pressure with and without Stiffeners (longitudinal and ring) with incorporativetechnique of an optimization into ANSYS software. The design elements in this researchwas: critical load, design variable (thickness of shell (TH), stiffener’s width (B) andstiffener’s height (HF). The results obtained illustrated that the objective is minimizedusing technique of numerical optimization in ANSYS with optimum shell thickness andstiffener’s sizes. In all cases the design variables (thickness of shell) was thicker than themonocoque due to a shell’s thicker is essential to achieve the strength constraints. It can beconcluded that cases (17,18,19, and 20) have more than 90% of un-stiffened critical load.The ring stiffeners causes increasing buckling load than un-stiffened and longitudinalstiffened cylinder.


2017 ◽  
Vol 5 (19) ◽  
pp. 4810-4819 ◽  
Author(s):  
Churong Ma ◽  
Jiahao Yan ◽  
Yuming Wei ◽  
Pu Liu ◽  
Guowei Yang

Although previous designs of nonlinear optical (NLO) nanostructures have focused on photonic crystals and metal plasmonic nanostructures, complex structures, large ohmic loss, and Joule heating greatly hinder their practical applications.


Author(s):  
Masataka Yoshimura ◽  
Kazuhiro Izui

Abstract Design problems for machine products are generally hierarchically expressed. With conventional product optimization methods, it is difficult to concurrently optimize all design variables of portions within the hierarchical structure. This paper proposes a design optimization method using genetic algorithms containing hierarchical genotype representations, so that the hierarchical structures of machine system designs are exactly expressed through genotype coding, and optimization can be concurrently conducted for all of the hierarchical structures. Crossover and mutation operations for manipulating the hierarchical genotype representations are also developed. The proposed method is applied to a machine-tool structural design to demonstrate its effectiveness.


Author(s):  
Qian Wang ◽  
Lucas Schmotzer ◽  
Yongwook Kim

<p>Structural designs of complex buildings and infrastructures have long been based on engineering experience and a trial-and-error approach. The structural performance is checked each time when a design is determined. An alternative strategy based on numerical optimization techniques can provide engineers an effective and efficient design approach. To achieve an optimal design, a finite element (FE) program is employed to calculate structural responses including forces and deformations. A gradient-based or gradient-free optimization method can be integrated with the FE program to guide the design iterations, until certain convergence criteria are met. Due to the iterative nature of the numerical optimization, a user programming is required to repeatedly access and modify input data and to collect output data of the FE program. In this study, an approximation method was developed so that the structural responses could be expressed as approximate functions, and that the accuracy of the functions could be adaptively improved. In the method, the FE program was not required to be directly looped in the optimization iterations. As a practical illustrative example, a 3D reinforced concrete building structure was optimized. The proposed method worked very well and optimal designs were found to reduce the torsional responses of the building.</p>


Author(s):  
Robert R. Mayer ◽  
Noboru Kikuchl ◽  
Richard A. Scott

Abstract The topological optimization of components to maximize crash energy absorption for a given volume is considered. The crash analysis is performed using a DYNA3D finite element analysis. The original solid elements are replaced by ones with holes, the hole size being characterized by a so-called density (measure of the reduced volume). A homogenization method is used to find elastic moduli as a function of this density. Simpler approximations were developed to find plastic moduli and yield stress as functions of density. Optimality criteria were derived from an optimization statement using densities as the design variables. A resizing algorithm was constructed so that the optimality criteria are approximately satisfied. A novel feature is the introduction of an objective function based on strain energies weighted at specified times. Each different choice of weighting factors leads to a different structure, allowing a range of design possibilities to be explored. The method was applied to an automotive body rear rail. The original design and a new design of equal volume with holes were compared for energy absorption.


Sign in / Sign up

Export Citation Format

Share Document