scholarly journals On the existence of positive periodic solution of a amensalism model with Holling II functional response

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sekson Sirisubtawee ◽  
Nattawut Khansai ◽  
Akapak Charoenloedmongkhon

AbstractIn the present article, we propose and analyze a new mathematical model for a predator–prey system including the following terms: a Monod–Haldane functional response (a generalized Holling type IV), a term describing the anti-predator behavior of prey populations and one for an impulsive control strategy. In particular, we establish the existence condition under which the system has a locally asymptotically stable prey-eradication periodic solution. Violating such a condition, the system turns out to be permanent. Employing bifurcation theory, some conditions, under which the existence and stability of a positive periodic solution of the system occur but its prey-eradication periodic solution becomes unstable, are provided. Furthermore, numerical simulations for the proposed model are given to confirm the obtained theoretical results.


2018 ◽  
Vol 16 (1) ◽  
pp. 1390-1411 ◽  
Author(s):  
Changtong Li ◽  
Sanyi Tang

AbstractDue to resource limitation, nonlinear impulsive control tactics related to integrated pest management have been proposed in a generalized pest-natural enemy model, which allows us to address the effects of nonlinear pulse control on the dynamics and successful pest control. The threshold conditions for the existence and global stability of pest-free periodic solution are provided by Floquet theorem and analytic methods. The existence of a nontrivial periodic solution is confirmed by showing the existence of nontrivial fixed point of the stroboscopic mapping determined by time snapshot, which equals to the common impulsive period. In order to address the applications of generalized results and to reveal how the nonlinear impulses affect the successful pest control, as an example the model with Holling II functional response function is investigated carefully. The main results reveal that the pest free periodic solution and a stable interior positive periodic solution can coexist for a wide range of parameters, which indicates that the local stability does not imply the global stability of the pest free periodic solution when nonlinear impulsive control is considered, and consequently the resource limitation (i.e. nonlinear control) may result in difficulties for successful pest control.


Sign in / Sign up

Export Citation Format

Share Document