scholarly journals Mixture of Al2O3-Cu/H2O-(CH2OH)2 MHD hybrid nanofluid flow due to a stretchable rotating disks system under the influence of non-uniform heat source or sink and thermal radiation

CFD letters ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 121-130
Author(s):  
Nur Faizzati Ahmad Faizal ◽  
Norihan Md Ariffin ◽  
Yong Faezah Rahim ◽  
Mohd Ezad Hafidz Hafidzuddin ◽  
Nadihah Wahi

In the presence of slips, non-uniform heat source/sink, thermal radiation and magnetohydrodynamic (MHD), micropolar hybrid nanofluid and heat transfer over a stretching sheet has been studied. The problem is modelled as a mathematical formulation that involves a system of the partial differential equation. The similarity approach is adopted, and self-similar ordinary differential equations are obtained and then those are solved numerically using the shooting method. The flow field is affected by the presence of physical parameters such as micropolar parameter, magnetic field parameter, suction parameter and slip parameter whereas the temperature field is affected by thermal radiation parameter, space-dependent parameter, temperature-dependent internal heat generation/absorption parameter, Prantl number and Biot number. The skin friction coefficient, couple stress and local Nusselt number are tabulated and analysed. The effects of the governing parameters on the velocity profiles, angular velocity profiles and temperature profiles are illustrated graphically. The results of velocity profiles, angular velocity profiles and temperature profiles are also obtained for several values of each parameters involved.


2017 ◽  
Vol 6 (5) ◽  
pp. 899-907 ◽  
Author(s):  
P. V. Satya Narayana ◽  
S. Moliya Akshit ◽  
JatinP. Ghori ◽  
B. Venkateswarlu

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fazle Mabood ◽  
Anum Shafiq ◽  
Waqar Ahmed Khan ◽  
Irfan Anjum Badruddin

Purpose This study aims to investigate the irreversibility associated with the Fe3O4–Co/kerosene hybrid-nanofluid past a wedge with nonlinear radiation and heat source. Design/methodology/approach This study reports the numerical analysis of the hybrid nanofluid model under the implications of the heat source and magnetic field over a static and moving wedge with slips. The second law of thermodynamics is applied with nonlinear thermal radiation. The system that comprises differential equations of partial derivatives is remodeled into the system of differential equations via similarity transformations and then solved through the Runge–Kutta–Fehlberg with shooting technique. The physical parameters, which emerges from the derived system, are discussed in graphical formats. Excellent proficiency in the numerical process is analyzed by comparing the results with available literature in limiting scenarios. Findings The significant outcomes of the current investigation are that the velocity field uplifts for higher velocity slip and magnetic strength. Further, the heat transfer rate is reduced with the incremental values of the Eckert number, while it uplifts with thermal slip and radiation parameters. An increase in Brinkmann’s number uplifts the entropy generation rate, while that peters out the Bejan number. The results of this study are of importance involving in the assessment of the effect of some important design parameters on heat transfer and, consequently, on the optimization of industrial processes. Originality/value This study is original work that reports the hybrid nanofluid model of Fe3O4–Co/kerosene.


Sign in / Sign up

Export Citation Format

Share Document