Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces

2017 ◽  
Vol 76 (3) ◽  
pp. 783-798 ◽  
Author(s):  
Nguyen Buong
Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 119
Author(s):  
Xinglong Wang ◽  
Jing Zhao ◽  
Dingfang Hou

The split feasibility problem models inverse problems arising from phase retrievals problems and intensity-modulated radiation therapy. For solving the split feasibility problem, Xu proposed a relaxed CQ algorithm that only involves projections onto half-spaces. In this paper, we use the dual variable to propose a new relaxed CQ iterative algorithm that generalizes Xu’s relaxed CQ algorithm in real Hilbert spaces. By using projections onto half-spaces instead of those onto closed convex sets, the proposed algorithm is implementable. Moreover, we present modified relaxed CQ algorithm with viscosity approximation method. Under suitable conditions, global weak and strong convergence of the proposed algorithms are proved. Some numerical experiments are also presented to illustrate the effectiveness of the proposed algorithms. Our results improve and extend the corresponding results of Xu and some others.


Author(s):  
A. A. Mebawondu ◽  
L. O. Jolaoso ◽  
H. A. Abass ◽  
O. K. Narain

In this paper, we propose a new modified relaxed inertial regularization method for finding a common solution of a generalized split feasibility problem, the zeros of sum of maximal monotone operators, and fixed point problem of two nonlinear mappings in real Hilbert spaces. We prove that the proposed method converges strongly to a minimum-norm solution of the aforementioned problems without using the conventional two cases approach. In addition, we apply our convergence results to the classical variational inequality and equilibrium problems, and present some numerical experiments to show the efficiency and applicability of the proposed method in comparison with other existing methods in the literature. The results obtained in this paper extend, generalize and improve several results in this direction.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Haiying Li ◽  
Yulian Wu ◽  
Fenghui Wang

The split feasibility problem SFP has received much attention due to its various applications in signal processing and image reconstruction. In this paper, we propose two inertial relaxed C Q algorithms for solving the split feasibility problem in real Hilbert spaces according to the previous experience of applying inertial technology to the algorithm. These algorithms involve metric projections onto half-spaces, and we construct new variable step size, which has an exact form and does not need to know a prior information norm of bounded linear operators. Furthermore, we also establish weak and strong convergence of the proposed algorithms under certain mild conditions and present a numerical experiment to illustrate the performance of the proposed algorithms.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1012
Author(s):  
Suthep Suantai ◽  
Narin Petrot ◽  
Montira Suwannaprapa

We consider the split feasibility problem in Hilbert spaces when the hard constraint is common solutions of zeros of the sum of monotone operators and fixed point sets of a finite family of nonexpansive mappings, while the soft constraint is the inverse image of a fixed point set of a nonexpansive mapping. We introduce iterative algorithms for the weak and strong convergence theorems of the constructed sequences. Some numerical experiments of the introduced algorithm are also discussed.


Sign in / Sign up

Export Citation Format

Share Document