scholarly journals ACOUSTIC DETECTION AND CHARACTERIZATION OF MARINE SEDIMENT WITH SHALLOW SEISMIC TECHNOLOGY IN RAMBAT WATERS, BANGKA BELITUNG

2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Haqqu Ramdhani ◽  
Henry M. Manik ◽  
Susilohadi Susilohadi

<p>High resolution of marine seismic reflection seismic were used to detect the layers of seafloor sediment and to interpret the seismic data geologically. The objectives of this study weres to detect and to characterize the seafloor sediment in the Rambat area, West Bangka, Bangka Belitung. Acquisition data was held on 10-24  August  2012 located between 105.1°00'00" - 105.5°00'00 " N and 1.7°00'00"-1.9° 00'00" W. Several methods used to process the data were geometry processing, band pass filter, predictive deconvolution,  and Autocoralation Gain Control (AGC)  in order to reduce the multiple noise and to  ease the data interpretation. Seismic cross section found in Cross Rambat (CRMBT) line 11 exhibited  sedimentation process of the sea floor which rocky substrates. The process was assumed to be occurred due to legal and illegal mining activities for long period of time.</p> <p>Keywords: seismic, acoustic, sediment, band pass filter, deconvolution, noise</p>

2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Haqqu Ramdhani ◽  
Henry M. Manik ◽  
Susilohadi Susilohadi

High resolution of marine seismic reflection seismic were used to detect the layers of seafloor sediment and to interpret the seismic data geologically. The objectives of this study weres to detect and to characterize the seafloor sediment in the Rambat area, West Bangka, Bangka Belitung. Acquisition data was held on 10-24  August  2012 located between 105.1°00'00" - 105.5°00'00 " N and 1.7°00'00"-1.9° 00'00" W. Several methods used to process the data were geometry processing, band pass filter, predictive deconvolution,  and Autocoralation Gain Control (AGC)  in order to reduce the multiple noise and to  ease the data interpretation. Seismic cross section found in Cross Rambat (CRMBT) line 11 exhibited  sedimentation process of the sea floor which rocky substrates. The process was assumed to be occurred due to legal and illegal mining activities for long period of time. Keywords: seismic, acoustic, sediment, band pass filter, deconvolution, noise


2007 ◽  
Vol 98 (5) ◽  
pp. 2943-2955 ◽  
Author(s):  
Erik P. Cook ◽  
Jennifer A. Guest ◽  
Yong Liang ◽  
Nicolas Y. Masse ◽  
Costa M. Colbert

We examined how hippocamal CA1 neurons process complex time-varying inputs that dendrites are likely to receive in vivo. We propose a functional model of the dendrite-to-soma input/output relationship that combines temporal integration and static-gain control mechanisms. Using simultaneous dual whole cell recordings, we injected 50 s of subthreshold and suprathreshold zero-mean white-noise current into the primary dendritic trunk along the proximal 2/3 of stratum radiatum and measured the membrane potential at the soma. Applying a nonlinear system-identification analysis, we found that a cascade of a linear filter followed by an adapting static-gain term fully accounted for the nonspiking input/output relationship between the dendrite and soma. The estimated filters contained a prominent band-pass region in the 1- to 10-Hz frequency range that remained constant as a function of stimulus variance. The gain of the dendrite-to-soma input/output relationship, in contrast, varied as a function of stimulus variance. When the contribution of the voltage-dependent current Ih was eliminated, the estimated filters lost their band-pass properties and the gain regulation was substantially altered. Our findings suggest that the dendrite-to-soma input/output relationship for proximal apical inputs to CA1 pyramidal neurons is well described as a band-pass filter in the theta frequency range followed by a gain-control nonlinearity that dynamically adapts to the statistics of the input signal.


2015 ◽  
Vol 2 (3) ◽  
Author(s):  
Tatsuo Ohmachi ◽  
Shusaku Inoue ◽  
Tetsuji Imai

The 2003 Tokachi-oki earthquake (MJ 8.0) occurred off the southeastern coast of Tokachi, Japan, and generated a large tsunami which arrived at Tokachi Harbor at 04:56 with a wave height of 4.3 m. Japan Marine Science and Technology Center (JAMSTEC) recovered records of water pressure and sea-bed acceleration at the bottom of the tsunami source region. These records are first introduced with some findings from Fourier analysis and band-pass filter analysis. Water pressure disturbance lasted for over 30 minutes and the duration was longer than those of accelerations. Predominant periods of the pressure looked like those excited by Rayleigh waves. Next, numerical simulation was conducted using the dynamic tsunami simulation technique able to represent generation and propagation of Rayleigh wave and tsunami, with a satisfactory result showing validity and usefulness of this technique. Keywords: Earthquake, Rayleigh wave, tsunami, near-field


Optik ◽  
2021 ◽  
Vol 226 ◽  
pp. 165924
Author(s):  
Shantanu Mandal ◽  
Kousik Bishayee ◽  
Arindum Mukherjee ◽  
B N Biswas ◽  
Chandan Kumar Sarkar

Sign in / Sign up

Export Citation Format

Share Document