scholarly journals Molecular Docking and Pharmacophore-Based Virtual Screening of Novel Inhibitors for HCV NS5B RNA-Dependent RNA Polymerase Enzyme from Crude Sesame Essential Oil.

2021 ◽  
Author(s):  
Jiaojiao Li ◽  
Lin Zhu ◽  
Zheng Qin ◽  
Zhengfu Li ◽  
Xun Gao ◽  
...  

Abstract Currently, Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV-2) lacks clinically specific drugs. In this study, the new coronavirus SARS-CoV-2 3-chymotrypsin-like protease(3CLpro)and RNA-dependent RNA polymerase(RdRp)were used as targets for virtual screening. After analysis of molecular docking and molecular dynamics simulation results, ZINC04259665,ZINC12659533 and ZINC70705490 have good docking scores,and they are stable in combination with 3CLpro/RdRp. The prediction of drug-like properties found that ZINC04259665 has good druggability and has the potential to further explore its anti-SARS-CoV-2.


ChemInform ◽  
2004 ◽  
Vol 35 (49) ◽  
Author(s):  
Ariamala Gopalsamy ◽  
Kitae Lim ◽  
John W. Ellingboe ◽  
Girija Krishnamurthy ◽  
Mark Orlowski ◽  
...  

2000 ◽  
Vol 74 (2) ◽  
pp. 851-863 ◽  
Author(s):  
Guangxiang Luo ◽  
Robert K. Hamatake ◽  
Danielle M. Mathis ◽  
Jason Racela ◽  
Karen L. Rigat ◽  
...  

ABSTRACT Hepatitis C virus (HCV) NS5B protein possesses an RNA-dependent RNA polymerase (RdRp) activity, a major function responsible for replication of the viral RNA genome. To further characterize the RdRp activity, NS5B proteins were expressed from recombinant baculoviruses, purified to near homogeneity, and examined for their ability to synthesize RNA in vitro. As a result, a highly active NS5B RdRp (1b-42), which contains an 18-amino acid C-terminal truncation resulting from a newly created stop codon, was identified among a number of independent isolates. The RdRp activity of the truncated NS5B is comparable to the activity of the full-length protein and is 20 times higher in the presence of Mn2+ than in the presence of Mg2+. When a 384-nucleotide RNA was used as the template, two major RNA products were synthesized by 1b-42. One is a complementary RNA identical in size to the input RNA template (monomer), while the other is a hairpin dimer RNA synthesized by a “copy-back” mechanism. Substantial evidence derived from several experiments demonstrated that the RNA monomer was synthesized through de novo initiation by NS5B rather than by a terminal transferase activity. Synthesis of the RNA monomer requires all four ribonucleotides. The RNA monomer product was verified to be the result of de novo RNA synthesis, as two expected RNA products were generated from monomer RNA by RNase H digestion. In addition, modification of the RNA template by the addition of the chain terminator cordycepin at the 3′ end did not affect synthesis of the RNA monomer but eliminated synthesis of the self-priming hairpin dimer RNA. Moreover, synthesis of RNA on poly(C) and poly(U) homopolymer templates by 1b-42 NS5B did not require the oligonucleotide primer at high concentrations (≥50 μM) of GTP and ATP, further supporting a de novo initiation mechanism. These findings suggest that HCV NS5B is able to initiate RNA synthesis de novo.


1999 ◽  
Vol 73 (2) ◽  
pp. 1649-1654 ◽  
Author(s):  
Eric Ferrari ◽  
Jacquelyn Wright-Minogue ◽  
Jane W. S. Fang ◽  
Bahige M. Baroudy ◽  
Johnson Y. N. Lau ◽  
...  

ABSTRACT Production of soluble full-length nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) has been shown to be problematic and requires the addition of salts, glycerol, and detergents. In an effort to improve the solubility of NS5B, the hydrophobic C terminus containing 21 amino acids was removed, yielding a truncated NS5B (NS5BΔCT) which is highly soluble and monodispersed in the absence of detergents. Fine deletional analysis of this region revealed that a four-leucine motif (LLLL) in the hydrophobic domain is responsible for the solubility profile of the full-length NS5B. Enzymatic characterization revealed that the RNA-dependent RNA polymerase (RdRp) activity of this truncated NS5B was comparable to those reported previously by others. For optimal enzyme activity, divalent manganese ions (Mn2+) are preferred rather than magnesium ions (Mg2+), whereas zinc ions (Zn2+) inhibit the RdRp activity. Gliotoxin, a known poliovirus 3D RdRp inhibitor, inhibited HCV NS5B RdRp in a dose-dependent manner. Kinetic analysis revealed that HCV NS5B has a rather low processivity compared to those of other known polymerases.


Sign in / Sign up

Export Citation Format

Share Document