scholarly journals COMPARATIVE STUDY OF CATTLE TICK RESISTANCE USING GENERALIZED LINEAR MIXED MODELS

2019 ◽  
Vol 37 (1) ◽  
pp. 41
Author(s):  
Amanda Marchi MAIORANO ◽  
Thiago Santos MOTA ◽  
Ana Carolina VERDUGO ◽  
Ricardo Antonio da Silva FARIA ◽  
Beatriz Pressi Molina da SILVA ◽  
...  

Comparison of tick resistance in Bos taurus indicus (Nelore) and Bos taurus taurus (Simmental and Caracu) subspecies was investigated utilizing generalized linear mixed models (GLMMs) with Poisson and Negative binomial distributions. Nelore animals (NE) are known to present greater resistance than t. taurus. Difference between tick resistance in Simmental (SI) and Caracu (CA) breeds has never been reported previously. Three artificial tick infestations were conducted to evaluate tick resistance in these breeds. The statistic point of the present study was to show alternative models for the evaluation of tick count data, the GLMMs. Analysis for tick resistance by GLMM with Negative binomial distribution has never been assessed previously. The analyses were performed by the use of the PROC GLIMMIX procedure of the SAS program. The results showed that GLMM with Negative binomial distribution is appropriated to evaluate tick count data with excess of zero observations avoiding overdispersion problems. Finally, considering multiple comparisons with the Bonferroni test, different pattern of tick infestation was observed for the studied breeds, suggesting that NE is the most resistant breed followed by CA.

2015 ◽  
Vol 57 (1) ◽  
pp. 1-19
Author(s):  
Norbert Mielenz ◽  
Joachim Spilke ◽  
Eberhard von Borell

Population-averaged and subject-specific models are available to evaluate count data when repeated observations per subject are present. The latter are also known in the literature as generalised linear mixed models (GLMM). In GLMM repeated measures are taken into account explicitly through random animal effects in the linear predictor. In this paper the relevant GLMMs are presented based on conditional Poisson or negative binomial distribution of the response variable for given random animal effects. Equations for the repeatability of count data are derived assuming normal distribution and logarithmic gamma distribution for the random animal effects. Using count data on aggressive behaviour events of pigs (barrows, sows and boars) in mixed-sex housing, we demonstrate the use of the Poisson »log-gamma intercept«, the Poisson »normal intercept« and the »normal intercept« model with negative binomial distribution. Since not all count data can definitely be seen as Poisson or negative-binomially distributed, questions of model selection and model checking are examined. Emanating from the example, we also interpret the least squares means, estimated on the link as well as the response scale. Options provided by the SAS procedure NLMIXED for estimating model parameters and for estimating marginal expected values are presented.


2015 ◽  
Vol 57 (1) ◽  
pp. 1-19
Author(s):  
Norbert Mielenz ◽  
Joachim Spilke ◽  
Eberhard von Borell

Abstract. Population-averaged and subject-specific models are available to evaluate count data when repeated observations per subject are present. The latter are also known in the literature as generalised linear mixed models (GLMM). In GLMM repeated measures are taken into account explicitly through random animal effects in the linear predictor. In this paper the relevant GLMMs are presented based on conditional Poisson or negative binomial distribution of the response variable for given random animal effects. Equations for the repeatability of count data are derived assuming normal distribution and logarithmic gamma distribution for the random animal effects. Using count data on aggressive behaviour events of pigs (barrows, sows and boars) in mixed-sex housing, we demonstrate the use of the Poisson »log-gamma intercept«, the Poisson »normal intercept« and the »normal intercept« model with negative binomial distribution. Since not all count data can definitely be seen as Poisson or negative-binomially distributed, questions of model selection and model checking are examined. Emanating from the example, we also interpret the least squares means, estimated on the link as well as the response scale. Options provided by the SAS procedure NLMIXED for estimating model parameters and for estimating marginal expected values are presented.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yuan-tao Xie ◽  
Zheng-xiao Li ◽  
Rahul A. Parsa

In nonlife actuarial science, credibility models are one of the main methods of experience ratemaking. Bühlmann-Straub credibility model can be expressed as a special case of linear mixed models (LMMs) with the underlying assumption of normality. In this paper, we extend the assumption of Bühlmann-Straub model to include Poisson and negative binomial distributions as they are more appropriate for describing the distribution of a number of claims. By using the framework of generalized linear mixed models (GLMMs), we obtain the generalized credibility premiums that contain as particular cases another credibility premium in the literature. Compared to generalized linear mixed models, our extended credibility models also have an advantage in that the credibility factor falls into the range from 0 to 1. The performance of our models in comparison with an existing model in the literature is also evaluated through numerical studies, which shows that our approach produces premium estimates close to the optima. In addition, our proposed model can also be applied to the most commonly used ratemaking approach, namely, the net, the optimal Bonus-Malus system.


Author(s):  
Reinhard Schunck ◽  
Francisco Perales

One typically analyzes clustered data using random- or fixed-effects models. Fixed-effects models allow consistent estimation of the effects of level-one variables, even if there is unobserved heterogeneity at level two. However, these models cannot estimate the effects of level-two variables. Hybrid and correlated random-effects models are flexible modeling specifications that separate within-and between-cluster effects and allow for both consistent estimation of level-one effects and inclusion of level-two variables. In this article, we elaborate on the separation of within- and between-cluster effects in generalized linear mixed models. These models present a unifying framework for an entire class of models whose response variables follow a distribution from the exponential family (for example, linear, logit, probit, ordered probit and logit, Poisson, and negative binomial models). We introduce the user-written command xthybrid, a shell for the meglm command. xthybrid can fit a variety of hybrid and correlated random-effects models.


2016 ◽  
Vol 23 (3) ◽  
pp. 359-385 ◽  
Author(s):  
Claude Manté ◽  
Saikou Oumar Kidé ◽  
Anne-Francoise Yao-Lafourcade ◽  
Bastien Mérigot

2020 ◽  
Vol 36 (8) ◽  
pp. 2345-2351 ◽  
Author(s):  
Xinyan Zhang ◽  
Nengjun Yi

Abstract Motivation Longitudinal metagenomics data, including both 16S rRNA and whole-metagenome shotgun sequencing data, enhanced our abilities to understand the dynamic associations between the human microbiome and various diseases. However, analytic tools have not been fully developed to simultaneously address the main challenges of longitudinal metagenomics data, i.e. high-dimensionality, dependence among samples and zero-inflation of observed counts. Results We propose a fast zero-inflated negative binomial mixed modeling (FZINBMM) approach to analyze high-dimensional longitudinal metagenomic count data. The FZINBMM approach is based on zero-inflated negative binomial mixed models (ZINBMMs) for modeling longitudinal metagenomic count data and a fast EM-IWLS algorithm for fitting ZINBMMs. FZINBMM takes advantage of a commonly used procedure for fitting linear mixed models, which allows us to include various types of fixed and random effects and within-subject correlation structures and quickly analyze many taxa. We found that FZINBMM remarkably outperformed in computational efficiency and was statistically comparable with two R packages, GLMMadaptive and glmmTMB, that use numerical integration to fit ZINBMMs. Extensive simulations and real data applications showed that FZINBMM outperformed other previous methods, including linear mixed models, negative binomial mixed models and zero-inflated Gaussian mixed models. Availability and implementation FZINBMM has been implemented in the R package NBZIMM, available in the public GitHub repository http://github.com//nyiuab//NBZIMM. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document