scholarly journals The use of "absolutely reliable cameras" in the supply of natural gas to agricultural facilities

2020 ◽  
pp. 60-65
Author(s):  
Aleksey Konstantinovich Klochko ◽  
Viktor Andreevich Zhila

The paper considers the supply of agricultural facilities with natural gas. The methodology and algorithm for determining the reliability index of gas distribution networks are presented. The concept of “absolutely reliable camera” is disclosed. Reliability indices and technical and economic characteristics of various schemes and configurations of gas distribution networks are determined. The issue of the use of "absolutely reliable cameras" for agricultural facilities is considered.  

2013 ◽  
Vol 07 (02) ◽  
pp. 1350005 ◽  
Author(s):  
GIAN PAOLO CIMELLARO ◽  
ALESSANDRO DE STEFANO ◽  
OMAR VILLA

The concept of disaster resilience has received considerable attention in recent years and it is increasingly used as an approach for understanding the dynamics of natural disaster systems. No models are available in literature to measure the performance of natural gas network, therefore, in this paper, a new performance index measuring functionality of gas distribution network have been proposed to evaluate the resilience index of the entire network. It can be used for any type of natural or manmade hazard which might lead to the disruption of the system. The gas distribution network of the municipalities of Introdacqua and Sulmona, two small towns in the center of Italy which were affected by 2009 earthquake have been used as case study. Together the pipeline network covers an area of 136 km2, with 3 M/R stations and 16 regulation groups. The software SynerGEE has been used to simulate different scenario events. The numerical results showed that, during emergency, to ensure an acceptable delivery service, it is crucial to guarantee the functionality of the medium pressure gas distribution network. Instead to improve resilience of the entire network the best retrofit strategy is to include emergency shutoff valves along the pipes.


2010 ◽  
Vol 2010 ◽  
pp. 1-23 ◽  
Author(s):  
Vadim E. Seleznev

The paper describes a new method for numerical monitoring of discrepancies in natural gas supply to consumers, who receive gas from gas distribution loops. This method serves to resolve the vital problem of commercial natural gas accounting under the conditions of deficient field measurements of gas supply volumes. Numerical monitoring makes it possible to obtain computational estimates of actual gas deliveries over given time spans and to estimate their difference from corresponding values reported by gas consumers. Such estimation is performed using a computational fluid dynamics simulator of gas flows in the gas distribution system of interest. Numerical monitoring of the discrepancy is based on a statement and numerical solution of identification problem of a physically proved gas dynamics mode of natural gas transmission through specified gas distribution networks. The identified mode parameters should have a minimum discrepancy with field measurements of gas transport at specified reference points of the simulated pipeline network.


2018 ◽  
Vol 229 ◽  
pp. 253-263 ◽  
Author(s):  
Ermanno Lo Cascio ◽  
Bart De Schutter ◽  
Corrado Schenone

Author(s):  
Lesme A. Corredor Martínez ◽  
Diego J. Guillen Pérez ◽  
Luz A. Castellón Pineda ◽  
David A. González Fernández ◽  
Alberto M. Palacio Bastos

Energy ◽  
2020 ◽  
Vol 207 ◽  
pp. 118138 ◽  
Author(s):  
Sheng Chen ◽  
Guoqiang Sun ◽  
Zhinong Wei ◽  
Dan Wang

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4453 ◽  
Author(s):  
Piero Danieli ◽  
Gianluca Carraro ◽  
Andrea Lazzaretto

A big amount of the pressure energy content in the natural gas distribution networks is wasted in throttling valves of pressure reduction stations (PRSs). Just a few energy recovery systems are currently installed in PRSs and are mostly composed of radial turboexpanders coupled with cogeneration internal combustion engines or gas-fired heaters providing the necessary preheating. This paper clarifies the reason for the scarce diffusion of energy recovery systems in PRSs and provides guidelines about the most feasible energy recovery technologies. Nine thousand PRSs are monitored and allocated into 12 classes, featuring different expansion ratios and available power. The focus is on PRSs with 1-to-20 expansion ratio and 1-to-500 kW available power. Three kinds of expanders are proposed in combination with different preheating systems based on boilers, heat pumps, or cogeneration engines. The goal is to identify, for each class, the most feasible combination by looking at the minimum payback period and maximum net present value. Results show that small size volumetric expanders with low expansion ratios and coupled with gas-fired heaters have the highest potential for large-scale deployment of energy recovery from PRSs. Moreover, the total recoverable energy using the feasible recovery systems is approximately 15% of the available energy.


2015 ◽  
Vol 21 (1) ◽  
pp. 05014005 ◽  
Author(s):  
G. P. Cimellaro ◽  
O. Villa ◽  
M. Bruneau

2009 ◽  
Vol 86 (10) ◽  
pp. 1915-1924 ◽  
Author(s):  
Jordi Oliver-Solà ◽  
Xavier Gabarrell ◽  
Joan Rieradevall

Sign in / Sign up

Export Citation Format

Share Document