scholarly journals Leo-III Version 1.1 (System description)

10.29007/grmx ◽  
2018 ◽  
Author(s):  
Christoph Benzmüller ◽  
Alexander Steen ◽  
Max Wisniewski

Leo-III is an automated theorem prover for (polymorphic) higher-order logic which supports all common TPTP dialects, including THF, TFF and FOF as well as their rank-1 polymorphic derivatives. It is based on a paramodulation calculus with ordering constraints and, in tradition of its predecessor LEO-II, heavily relies on cooperation with external first-order theorem provers.Unlike LEO-II, asynchronous cooperation with typed first-order provers and an agent-based internal cooperation scheme is supported. In this paper, we sketch Leo-III's underlying calculus, survey implementation details and give examples of use.

10.29007/dzc2 ◽  
2018 ◽  
Author(s):  
Max Wisniewski ◽  
Alexander Steen

In this paper, we present an embedding of higher-order nominal modal logicinto classical higher-order logic, and study its automation. There exists no automated theorem prover for first-order or higher-order nominal logic at the moment, hence, this is the first automation for this kind of logic.In our work, we focus on nominal tense logic and have successfully proven some first theorems.


10.29007/jgkw ◽  
2018 ◽  
Author(s):  
Alexander Steen ◽  
Max Wisniewski ◽  
Christoph Benzmüller

While interactive proof assistants for higher-order logic (HOL) commonly admit reasoning within rich type systems, current theorem provers for HOL are mainly based on simply typed lambda-calculi and therefore do not allow such flexibility. In this paper, we present modifications to the higher-order automated theorem prover Leo-III for turning it into a reasoning system for rank-1 polymorphic HOL.To that end, a polymorphic version of HOL and a suitable paramodulation-based calculus are sketched. The implementation is evaluated using a set of polymorphic TPTP THF problems.


10.29007/n6j7 ◽  
2018 ◽  
Author(s):  
Simon Cruanes

We argue that automatic theorem provers should become more versatile and should be able to tackle problems expressed in richer input formats. Salient research directions include (i) developing tight combinations of SMT solvers and first-order provers; (ii) adding better handling of theories in first-order provers; (iii) adding support for inductive proving; (iv) adding support for user-defined theories and functions; and (v) bringing to the provers some basic abilities to deal with logics beyond first-order, such as higher-order logic.


Author(s):  
Petar Vukmirović ◽  
Alexander Bentkamp ◽  
Jasmin Blanchette ◽  
Simon Cruanes ◽  
Visa Nummelin ◽  
...  

AbstractSuperposition is among the most successful calculi for first-order logic. Its extension to higher-order logic introduces new challenges such as infinitely branching inference rules, new possibilities such as reasoning about formulas, and the need to curb the explosion of specific higher-order rules. We describe techniques that address these issues and extensively evaluate their implementation in the Zipperposition theorem prover. Largely thanks to their use, Zipperposition won the higher-order division of the CASC-J10 competition.


10.29007/87vl ◽  
2018 ◽  
Author(s):  
Guillaume Bury ◽  
Raphaël Cauderlier ◽  
Pierre Halmagrand

Extending first-order logic with ML-style polymorphism allows to definegeneric axioms dealing with several sorts. Until recently, mostautomated theorem provers relied on preprocess encodings intomono/many-sorted logic to reason within such theories. In this paper, wediscuss the implementation of polymorphism into thefirst-order tableau-based automated theorem prover Zenon. Thisimplementation leads to slightly modify some basic parts of the code,from the representation of expressions to the proof-search algorithm.


Author(s):  
Alexander Bentkamp ◽  
Jasmin Blanchette ◽  
Sophie Tourret ◽  
Petar Vukmirović

AbstractWe recently designed two calculi as stepping stones towards superposition for full higher-order logic: Boolean-free $$\lambda $$ λ -superposition and superposition for first-order logic with interpreted Booleans. Stepping on these stones, we finally reach a sound and refutationally complete calculus for higher-order logic with polymorphism, extensionality, Hilbert choice, and Henkin semantics. In addition to the complexity of combining the calculus’s two predecessors, new challenges arise from the interplay between $$\lambda $$ λ -terms and Booleans. Our implementation in Zipperposition outperforms all other higher-order theorem provers and is on a par with an earlier, pragmatic prototype of Booleans in Zipperposition.


10.29007/jsb9 ◽  
2018 ◽  
Author(s):  
Tobias Gleißner ◽  
Alexander Steen ◽  
Christoph Benzmüller

We present a procedure for algorithmically embedding problems formulated in higher- order modal logic into classical higher-order logic. The procedure was implemented as a stand-alone tool and can be used as a preprocessor for turning TPTP THF-compliant the- orem provers into provers for various modal logics. The choice of the concrete modal logic is thereby specified within the problem as a meta-logical statement. This specification for- mat as well as the underlying semantics parameters are discussed, and the implementation and the operation of the tool are outlined.By combining our tool with one or more THF-compliant theorem provers we accomplish the most widely applicable modal logic theorem prover available to date, i.e. no other available prover covers more variants of propositional and quantified modal logics. Despite this generality, our approach remains competitive, at least for quantified modal logics, as our experiments demonstrate.


Author(s):  
Visa Nummelin ◽  
Alexander Bentkamp ◽  
Sophie Tourret ◽  
Petar Vukmirović

AbstractWe present a complete superposition calculus for first-order logic with an interpreted Boolean type. Our motivation is to lay the foundation for refutationally complete calculi in more expressive logics with Booleans, such as higher-order logic, and to make superposition work efficiently on problems that would be obfuscated when using clausification as preprocessing. Working directly on formulas, our calculus avoids the costly axiomatic encoding of the theory of Booleans into first-order logic and offers various ways to interleave clausification with other derivation steps. We evaluate our calculus using the Zipperposition theorem prover, and observe that, with no tuning of parameters, our approach is on a par with the state-of-the-art approach.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1142
Author(s):  
Feng Cao ◽  
Yang Xu ◽  
Jun Liu ◽  
Shuwei Chen ◽  
Xinran Ning

First-order logic is an important part of mathematical logic, and automated theorem proving is an interdisciplinary field of mathematics and computer science. The paper presents an automated theorem prover for first-order logic, called C S E _ E 1.0, which is a combination of two provers contradiction separation extension (CSE) and E, where CSE is based on the recently-introduced multi-clause standard contradiction separation (S-CS) calculus for first-order logic and E is the well-known equational theorem prover for first-order logic based on superposition and rewriting. The motivation of the combined prover C S E _ E 1.0 is to (1) evaluate the capability, applicability and generality of C S E _ E , and (2) take advantage of novel multi-clause S-CS dynamic deduction of CSE and mature equality handling of E to solve more and harder problems. In contrast to other improvements of E, C S E _ E 1.0 optimizes E mainly from the inference mechanism aspect. The focus of the present work is given to the description of C S E _ E including its S-CS rule, heuristic strategies, and the S-CS dynamic deduction algorithm for implementation. In terms of combination, in order not to lose the capability of E and use C S E _ E to solve some hard problems which are unsolved by E, C S E _ E 1.0 schedules the running of the two provers in time. It runs plain E first, and if E does not find a proof, it runs plain CSE, then if it does not find a proof, some clauses inferred in the CSE run as lemmas are added to the original clause set and the combined clause set handed back to E for further proof search. C S E _ E 1.0 is evaluated through benchmarks, e.g., CASC-26 (2017) and CASC-J9 (2018) competition problems (FOFdivision). Experimental results show that C S E _ E 1.0 indeed enhances the performance of E to a certain extent.


Sign in / Sign up

Export Citation Format

Share Document