Computer-assisted extra-articular distal radius osteotomies using patient-specific surgical guides

10.29007/svbd ◽  
2018 ◽  
Author(s):  
Vasilii Shishkin ◽  
Valeriy Golubev

Malunions of the distal radius are often treated with correction osteotomies, which can be challenging to perform.In this report, 23 patients with symptomatic distal radius malunions were treated using 3D printed patient-specific surgical guides to facilitate surgery. Patients were compared with a control group of 23 patients that underwent similar surgery with a conventional x-ray planning approach.Postoperatively all patients in the computer-assisted group showed recovery of ROM, with no anatomical abnormalities on x-ray examination. 6 patients in the conventional planning group had reduced ROM with a residual volar tilt on x-ray images.Computer-assisted planning with the use of 3D printed patient-specific surgical guides enhances results of corrective osteotomies of distal radius malunions.

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Lukas Postl ◽  
Thomas Mücke ◽  
Stefan Hunger ◽  
Oliver Bissinger ◽  
Michael Malek ◽  
...  

Abstract Background The accuracy of computer-assisted biopsies at the lower jaw was compared to the accuracy of freehand biopsies. Methods Patients with a bony lesion of the lower jaw with an indication for biopsy were prospectively enrolled. Two customized bone models per patient were produced using a 3D printer. The models of the lower jaw were fitted into a phantom head model to simulate operation room conditions. Biopsies for the study group were taken by means of surgical guides and freehand biopsies were performed for the control group. Results The deviation of the biopsy axes from the planning was significantly less when using templates. It turned out to be 1.3 ± 0.6 mm for the biopsies with a surgical guide and 3.9 ± 1.1 mm for the freehand biopsies. Conclusions Surgical guides allow significantly higher accuracy of biopsies. The preliminary results are promising, but clinical evaluation is necessary.


Author(s):  
G. Caiti ◽  
J. G. G. Dobbe ◽  
S. D. Strackee ◽  
M. H. M. van Doesburg ◽  
G. J. Strijkers ◽  
...  

Abstract Purpose In corrective osteotomy of the distal radius, patient-specific 3D printed surgical guides or optical navigation systems are often used to navigate the surgical saw. The purpose of this cadaver study is to present and evaluate a novel cast-based guiding system to transfer the virtually planned corrective osteotomy of the distal radius. Methods We developed a cast-based guiding system composed of a cast featuring two drilling slots as well as an external cutting guide that was used to orient the surgical saw for osteotomy in the preoperatively planned position. The device was tested on five cadaver specimens with different body fat percentages. A repositioning experiment was performed to assess the precision of replacing an arm in the cast. Accuracy and precision of drilling and cutting using the proposed cast-based guiding system were evaluated using the same five cadaver arms. CT imaging was used to quantify the positioning errors in 3D. Results For normal-weight cadavers, the resulting total translation and rotation repositioning errors were ± 2 mm and ± 2°. Across the five performed surgeries, the median accuracy and Inter Quartile Ranges (IQR) of pre-operatively planned drilling trajectories were 4.3° (IQR = 2.4°) and 3.1 mm (IQR = 4.9 mm). Median rotational and translational errors in transferring the pre-operatively planned osteotomy plane were and 3.9° (IQR = 4.5°) and 2.6 mm (IQR = 4.2 mm), respectively. Conclusion For normal weight arm specimens, navigation of corrective osteotomy via a cast-based guide resulted in transfer errors comparable to those using invasive surgical guides. The promising positioning capabilities justify further investigating whether the method could ultimately be used in a clinical setting, which could especially be of interest when used with less invasive osteosynthesis material.


2021 ◽  
Vol 11 (3) ◽  
pp. 1038
Author(s):  
Sara Condino ◽  
Giuseppe Turini ◽  
Virginia Mamone ◽  
Paolo Domenico Parchi ◽  
Vincenzo Ferrari

Simulation for surgical training is increasingly being considered a valuable addition to traditional teaching methods. 3D-printed physical simulators can be used for preoperative planning and rehearsal in spine surgery to improve surgical workflows and postoperative patient outcomes. This paper proposes an innovative strategy to build a hybrid simulation platform for training of pedicle screws fixation: the proposed method combines 3D-printed patient-specific spine models with augmented reality functionalities and virtual X-ray visualization, thus avoiding any exposure to harmful radiation during the simulation. Software functionalities are implemented by using a low-cost tracking strategy based on fiducial marker detection. Quantitative tests demonstrate the accuracy of the method to track the vertebral model and surgical tools, and to coherently visualize them in either the augmented reality or virtual fluoroscopic modalities. The obtained results encourage further research and clinical validation towards the use of the simulator as an effective tool for training in pedicle screws insertion in lumbar vertebrae.


2021 ◽  
Vol 8 ◽  
Author(s):  
Babak Saravi ◽  
Gernot Lang ◽  
Rebecca Steger ◽  
Andreas Vollmer ◽  
Jörn Zwingmann

Malunions of the upper extremity can result in severe functional problems and increase the risk of osteoarthritis. The surgical reconstruction of complex malunions can be technically challenging. Recent advances in computer-assisted orthopedic surgery provide an innovative solution for complex three-dimensional (3-D) reconstructions. This study aims to evaluate the clinical applicability of 3-D computer-assisted planning and surgery for upper extremity malunions. Hence, we provide a summary of evidence on this topic and highlight recent advances in this field. Further, we provide a practical implementation of this therapeutic approach based on three cases of malunited forearm fractures treated with corrective osteotomy using preoperative three-dimensional simulation and patient-specific surgical guides. All three cases, one female (56 years old) and two males (18 and 26 years old), had painful restrictions in range of motion (ROM) due to forearm malunions and took part in clinical and radiologic assessments. Postoperative evaluation of patient outcomes showed a substantial increase in range of motion, reduction of preoperatively reported pain, and an overall improvement of patients' satisfaction. The therapeutic approach used in these cases resulted in an excellent anatomical and functional reconstruction and was assessed as precise, safe, and reliable. Based on current evidence and our results, the 3-D preoperative planning technique could be the new gold standard in the treatment of complex upper extremity malunions in the future.


2018 ◽  
Vol 5 (5) ◽  
pp. 162-166 ◽  
Author(s):  
Rafael Moreta‐Martinez ◽  
David García‐Mato ◽  
Mónica García‐Sevilla ◽  
Rubén Pérez‐Mañanes ◽  
José Calvo‐Haro ◽  
...  

2020 ◽  
Vol 10 (4) ◽  
pp. 1325
Author(s):  
Bo-Yeon Hwang ◽  
Jae-Yeol Lee ◽  
Junho Jung ◽  
Joo-Young Ohe ◽  
Young-Gyu Eun ◽  
...  

This study aimed to present and evaluate alternative lesion-specific mandibulectomy methods for preserving the mandibular anatomical structures as compared with the conventional virtual surgical plan. Fifteen patients who received segmental mandibulectomy were included in this study, and the following parameters were evaluated: (1) the disease-free bone margin, (2) the volume and surface between the tailor-made resection simulation and conventional resection simulation, and (3) the preserved mandibular anatomical structures. In all 15 patients, disease-free bone margins were confirmed by histopathology. Volumes of conventional resection simulation and tail-made resection simulation were 49,468.66 ± 14,007.96 mm3 and 52,610.01 ± 13,755.33 mm3 and the surfaces were 20,927.38 ± 4471.70 mm2 and 22,356.49 ± 4185.73 mm2, respectively; these were statistically significant (both, p < 0.001). Mandibular dentition was partially preserved in six patients. Twelve of the 15 patients had changes in defect classification with preservation of the mandibular inferior border. In conclusion, alternative lesion-specific mandibulectomy was a less invasive method for effectively removing mandibular lesions while preserving the important anatomical structures of the mandible.


2021 ◽  
Vol 11 (8) ◽  
pp. 763
Author(s):  
Anne M. L. Meesters ◽  
Nick Assink ◽  
Kaj ten Duis ◽  
Eelco M. Fennema ◽  
Joep Kraeima ◽  
...  

Due to the complex anatomical shape of the pelvis, screw placement can be challenging in acetabular fracture surgery. This study aims to assess the accuracy of screw placement using patient-specific surgical drilling guides applied to pre-contoured conventional implants in acetabular fracture surgery. CT scans were made of four human cadavers to create 3D models of each (unfractured) pelvis. Implants were pre-contoured on 3D printed pelvic models and optically scanned. Following virtual preoperative planning, surgical drilling guides were designed to fit on top of the implant and were 3D printed. The differences between the pre-planned and actual screw directions (degrees) and screw entry points (mm) were assessed from the pre- and postoperative CT-scans. The median difference between the planned and actual screw direction was 5.9° (IQR: 4–8°) for the in-plate screws and 7.6° (IQR: 6–10°) for the infra-acetabular and column screws. The median entry point differences were 3.6 (IQR: 2–5) mm for the in-plate screws and 2.6 (IQR: 2–3) mm for the infra-acetabular and column screws. No screws penetrated into the hip joint or caused soft tissue injuries. Three-dimensional preoperative planning in combination with surgical guides that envelope pre-contoured conventional implants result in accurate screw placement during acetabular fracture surgery.


Sign in / Sign up

Export Citation Format

Share Document