scholarly journals Computer-Assisted Preoperative Simulations and 3D Printed Surgical Guides Enable Safe and Less-Invasive Mandibular Segmental Resection: Tailor-Made Mandibular Resection

2020 ◽  
Vol 10 (4) ◽  
pp. 1325
Author(s):  
Bo-Yeon Hwang ◽  
Jae-Yeol Lee ◽  
Junho Jung ◽  
Joo-Young Ohe ◽  
Young-Gyu Eun ◽  
...  

This study aimed to present and evaluate alternative lesion-specific mandibulectomy methods for preserving the mandibular anatomical structures as compared with the conventional virtual surgical plan. Fifteen patients who received segmental mandibulectomy were included in this study, and the following parameters were evaluated: (1) the disease-free bone margin, (2) the volume and surface between the tailor-made resection simulation and conventional resection simulation, and (3) the preserved mandibular anatomical structures. In all 15 patients, disease-free bone margins were confirmed by histopathology. Volumes of conventional resection simulation and tail-made resection simulation were 49,468.66 ± 14,007.96 mm3 and 52,610.01 ± 13,755.33 mm3 and the surfaces were 20,927.38 ± 4471.70 mm2 and 22,356.49 ± 4185.73 mm2, respectively; these were statistically significant (both, p < 0.001). Mandibular dentition was partially preserved in six patients. Twelve of the 15 patients had changes in defect classification with preservation of the mandibular inferior border. In conclusion, alternative lesion-specific mandibulectomy was a less invasive method for effectively removing mandibular lesions while preserving the important anatomical structures of the mandible.

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Lukas Postl ◽  
Thomas Mücke ◽  
Stefan Hunger ◽  
Oliver Bissinger ◽  
Michael Malek ◽  
...  

Abstract Background The accuracy of computer-assisted biopsies at the lower jaw was compared to the accuracy of freehand biopsies. Methods Patients with a bony lesion of the lower jaw with an indication for biopsy were prospectively enrolled. Two customized bone models per patient were produced using a 3D printer. The models of the lower jaw were fitted into a phantom head model to simulate operation room conditions. Biopsies for the study group were taken by means of surgical guides and freehand biopsies were performed for the control group. Results The deviation of the biopsy axes from the planning was significantly less when using templates. It turned out to be 1.3 ± 0.6 mm for the biopsies with a surgical guide and 3.9 ± 1.1 mm for the freehand biopsies. Conclusions Surgical guides allow significantly higher accuracy of biopsies. The preliminary results are promising, but clinical evaluation is necessary.


10.29007/svbd ◽  
2018 ◽  
Author(s):  
Vasilii Shishkin ◽  
Valeriy Golubev

Malunions of the distal radius are often treated with correction osteotomies, which can be challenging to perform.In this report, 23 patients with symptomatic distal radius malunions were treated using 3D printed patient-specific surgical guides to facilitate surgery. Patients were compared with a control group of 23 patients that underwent similar surgery with a conventional x-ray planning approach.Postoperatively all patients in the computer-assisted group showed recovery of ROM, with no anatomical abnormalities on x-ray examination. 6 patients in the conventional planning group had reduced ROM with a residual volar tilt on x-ray images.Computer-assisted planning with the use of 3D printed patient-specific surgical guides enhances results of corrective osteotomies of distal radius malunions.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 615
Author(s):  
Kyung Chul Oh ◽  
June-Sung Shim ◽  
Ji-Man Park

The present study aims to compare the accuracy of metal sleeve-free 3D-printed computer-assisted implant surgical guides (MSF group) (n = 10) with metal sleeve-incorporated 3D-printed computer-assisted implant surgical guides (MSI group) (n = 10). Implants of diameter 4.0 mm and 5.0 mm were placed in the left second premolars and bilateral first molars, respectively, using a fully guided system. Closed-form sleeves were used in teeth on the left and open-form sleeves on the right. The weight differences of the surgical guides before and after implant placement, and angular deviations before and after implant placement were measured. Weight differences were compared with Student’s t-tests and angular deviations with Mann–Whitney tests. Cross-sectional views of the insert parts were observed with a scanning electron microscope. Preoperative and postoperative weight differences between the two groups were not statistically significant (p = 0.821). In terms of angular deviations, those along the mesiodistal direction for the left second premolars were significantly lower in the MSF group (p = 0.006). However, those along the mesiodistal direction for the bilateral molars and those along the buccolingual direction for all teeth were not significantly different (p > 0.05). 3D-printed implant surgical guides without metal sleeve inserts enable accurate implant placement without exhausting the guide holes, rendering them feasible for fully guided implant placement.


2020 ◽  
Vol 9 (5) ◽  
pp. 1506 ◽  
Author(s):  
Neha Sharma ◽  
Shuaishuai Cao ◽  
Bilal Msallem ◽  
Christoph Kunz ◽  
Philipp Brantner ◽  
...  

Computer-assisted surgery with three-dimensional (3D) printed surgical guides provides more accurate results than free-hand surgery. Steam sterilization could be one of the factors that affect the dimensions of surgical guide resin materials, leading to inaccuracies during surgeries. The purpose of this study was to evaluate the effects of steam sterilization on the dimensional accuracy of indication-specific hollow cube test bodies, manufactured in-house using Class IIa biocompatible resin materials (proprietary and third-party). To evaluate the pre- and post-sterilization dimensional accuracy, root mean square (RMS) values were calculated. The results indicate that, in all the groups, steam sterilization resulted in an overall linear expansion of the photopolymeric resin material, with an increase in outer dimensions and a decrease in inner dimensions. The effects on the dimensional accuracy of test bodies were not statistically significant in all the groups, except PolyJet Glossy (p > 0.05). The overall pre- and post-sterilization RMS values were below 100 and 200 µm, respectively. The highest accuracies were seen in proprietary resin materials, i.e., PolyJet Glossy and SLA-LT, in pre- and post-sterilization measurements, respectively. The dimensional accuracy of third-party resin materials, i.e., SLA-Luxa and SLA-NextDent, were within a comparable range as proprietary materials and can serve as an economical alternative.


2021 ◽  
Vol 10 (3) ◽  
pp. 391
Author(s):  
Rani D’haese ◽  
Tom Vrombaut ◽  
Geert Hommez ◽  
Hugo De Bruyn ◽  
Stefan Vandeweghe

Purpose: The aim of this in vitro study is to evaluate the accuracy of implant position using mucosal supported surgical guides, produced by a desktop 3D printer. Methods: Ninety implants (Bone Level Roxolid, 4.1 mm × 10 mm, Straumann, Villerat, Switzerland) were placed in fifteen mandibular casts (Bonemodels, Castellón de la Plana, Spain). A mucosa-supported guide was designed and printed for each of the fifteen casts. After placement of the implants, the location was assessed by scanning the cast and scan bodies with an intra-oral scanner (Primescan®, Dentsply Sirona, York, PA, USA). Two comparisons were performed: one with the mucosa as a reference, and one where only the implants were aligned. Angular, coronal and apical deviations were measured. Results: The mean implant angular deviation for tissue and implant alignment were 3.25° (SD 1.69°) and 2.39° (SD 1.42°) respectively, the coronal deviation 0.82 mm (SD 0.43 mm) and 0.45 mm (SD 0.31 mm) and the apical deviation 0.99 mm (SD 0.45 mm) and 0.71 mm (SD 0.43 mm). All three variables were significantly different between the tissue and implant alignment (p < 0.001). Conclusion: Based on the results of this study, we conclude that guided implant surgery using desktop 3D printed mucosa-supported guides has a clinically acceptable level of accuracy. The resilience of the mucosa has a negative effect on the guide stability and increases the deviation in implant position.


2021 ◽  
Vol 22 (6) ◽  
pp. 3198
Author(s):  
Shiho Wasai ◽  
Eriko Toyoda ◽  
Takumi Takahashi ◽  
Miki Maehara ◽  
Eri Okada ◽  
...  

We are conducting a clinical study of the use of allogeneic polydactyly-derived chondrocyte sheets (PD sheets) for the repair of articular cartilage damage caused by osteoarthritis. However, the transplantation of PD sheets requires highly invasive surgery. To establish a less invasive treatment, we are currently developing injectable fragments of PD sheets (PD sheets-mini). Polydactyly-derived chondrocytes were seeded in RepCell™ or conventional temperature-responsive inserts and cultured. Cell counts and viability, histology, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qPCR), and flow cytometry were used to characterize PD sheets-mini and PD sheets collected from each culture. To examine the effects of injection on cell viability, PD sheets-mini were tested in four experimental conditions: non-injection control, 18 gauge (G) needle, 23G needle, and syringe only. PD sheets-mini produced similar amounts of humoral factors as PD sheets. No histological differences were observed between PD sheets and PD sheets-mini. Except for COL2A1, expression of cartilage-related genes did not differ between the two types of PD sheet. No significant differences were observed between injection conditions. PD sheets-mini have characteristics that resemble PD sheets. The cell viability of PD sheets-mini was not significantly affected by needle gauge size. Intra-articular injection may be a feasible, less invasive method to transplant PD sheets-mini.


Author(s):  
T. M. Amulya ◽  
K. G. Siree ◽  
T. M. Pramod Kumar ◽  
M. B. Bharathi ◽  
K. Divith ◽  
...  

The scope and applications of biomaterials have spread out throughout a broad spectrum. Particularly in pharmacy, biomaterials are an attractive choice because they can be modified to decrease toxicity, increase the targeting ability among many other aspects of drug delivery. Extensive studies have led to the development of many metal-based, ceramic, biocompatible and biodegradable biomaterials for medical purposes among many others. The utilization of 3D printing in this discipline is a very novel research subject with infinite potential. Personalized and customized nasal implants are a great option to increase patient compliance and 3D printed accurate anatomical structures are rendered to be effective tools of learning. One of the disadvantages of biomaterial-based implants is the formation of a thick fibrous capsule formation around the implant, others being breakage, soft tissue loss and so on. Regulatory aspects are less explored for nasal implants. 3D printing is a unique technique that allows for a high degree of customisation in pharmacy, dentistry and in designing of medical devices. Current research in 3D printing indicates towards reproducing an organ in the form of a chip; paving the way for more studies and opportunities to perfecting the existing technique.


2013 ◽  
Vol 25 (1) ◽  
pp. 3-8
Author(s):  
Nahar Nurun ◽  
Molina Rani Kundu ◽  
Naher Akterun

Objective: To assess the outcomes of abdominal sacral colpopexy in less invasive method. Study design: It was a prospective study conducted in Comilla Medical College Hospital and Comilla General Hospital during the period from 2005 to 2009.Method: Thirty women with vaginal vault prolapse were selected by inclusion and exclusion criteria in a consecutive, exhaustive method. Primary outcome measurements were included subjective, objective and patient-determined success rate. Secondary outcome included the impact on bowel, bladder, sexual function and quality of life. Result: Result shows that, vault prolapse is mostly associated with older patients, age more than sixty (66.7%), para >5 (60%) and menopausal women (66.7%). Vault prolapse was mostly associated with cystocele (93.3%), stress incontinence (76.7%) and more common following abdominal hysterectomy (70%). During operation the dissection was less (3-4cm). Average operating time was 54.33/min; average estimated blood loss was 49.17/ml. One patient required blood transfusion, one developed haematoma during surgery, no gut injury or haemodynamic instability developed. Post operatively, no internal haemorrhage, 4 patient developed fever (13.3%), wound infection one (3.3%), UTI 4 patients (13.3%), no voiding difficulty or thromboembolism and one patient developed mesh rejection (3.3%). After one year follow-up success rate was 96.7%. Conclusion: Abdominal sacral colpopexy is a safe and effective method for correction of vaginal vault prolapse. DOI: http://dx.doi.org/10.3329/bjog.v25i1.13723 Bangladesh J Obstet Gynaecol, 2010; Vol. 25(1) : 3-8


Author(s):  
Xingjian Wei ◽  
Li Zeng ◽  
Zhijian Pei

Medical models are physical models of human or animal anatomical structures such as skull and heart. Such models are used in simulation and planning of complex surgeries. They can also be utilized for anatomy teaching in medical curriculum. Traditionally, medical models are fabricated by paraffin wax or silicone casting. However, this method is time-consuming, of low quality, and not suitable for personalization. Recently, 3D printing technologies are used to fabricate medical models. Various applications of 3D printed medical models in surgeries and anatomy teaching have been reported, and their advantages over traditional medical models have been well-documented. However, 3D printing of medical models bears some special challenges compared to industrial applications of 3D printing. This paper reviews more than 50 publications on 3D printing of medical models between 2006 and 2016, and discusses knowledge gaps and potential research directions in this field.


Author(s):  
Seung-Hyun Rhee ◽  
Seung-Hak Baek ◽  
Sang-Hun Park ◽  
Jong-Cheol Kim ◽  
Chun-Gi Jeong ◽  
...  

Abstract Backgrounds The purpose of this study is to discuss the total joint reconstruction surgery for a patient with recurrent ankylosis in bilateral temporomandibular joints (TMJs) using three-dimensional (3D) virtual surgical planning, computer-aided manufacturing (CAD/CAM)-fabricated surgical guides, and stock TMJ prostheses. Case presentation A 66-year-old female patient, who had a history of multiple TMJ surgeries, complained of severe difficulty in eating and trismus. The 3D virtual surgery was performed with a virtual surgery software (FACEGIDE, MegaGen implant, Daegu, South Korea). After confirmation of the location of the upper margin for resection of the root of the zygoma and the lower margin for resection of the ankylosed condyle, and the position of the fossa and condyle components of stock TMJ prosthesis (Biomet, Jacksonville, FL, USA), the surgical guides were fabricated with CAD/CAM technology. Under general anesthesia, osteotomy and placement of the stock TMJ prosthesis (Biomet) were carried out according to the surgical planning. At 2 months after the operation, the patient was able to open her mouth up to 30 mm without complication. Conclusion For a patient who has recurrent ankylosis in bilateral TMJs, total joint reconstruction surgery using 3D virtual surgical planning, CAD/CAM-fabricated surgical guides, and stock TMJ prostheses may be an effective surgical treatment option.


Sign in / Sign up

Export Citation Format

Share Document