3D Printing in Medicine
Latest Publications


TOTAL DOCUMENTS

129
(FIVE YEARS 92)

H-INDEX

14
(FIVE YEARS 6)

Published By Springer (Biomed Central Ltd.)

2365-6271

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Daniel J. Duke ◽  
Alexander L. Clarke ◽  
Andrew L. Stephens ◽  
Lee Djumas ◽  
Shaun D. Gregory

Abstract Background The global pandemic of novel coronavirus (SARS-CoV-2) has led to global shortages of ventilators and accessories. One solution to this problem is to split ventilators between multiple patients, which poses the difficulty of treating two patients with dissimilar ventilation needs. A proposed solution to this problem is the use of 3D-printed flow splitters and restrictors. There is little data available on the reliability of such devices and how the use of different 3D printing methods might affect their performance. Methods We performed flow resistance measurements on 30 different 3D-printed restrictor designs produced using a range of fused deposition modelling and stereolithography printers and materials, from consumer grade printers using polylactic acid filament to professional printers using surgical resin. We compared their performance to novel computational fluid dynamics models driven by empirical ventilator flow rate data. This indicates the ideal performance of a part that matches the computer model. Results The 3D-printed restrictors varied considerably between printers and materials to a sufficient degree that would make them unsafe for clinical use without individual testing. This occurs because the interior surface of the restrictor is rough and has a reduced nominal average diameter when compared to the computer model. However, we have also shown that with careful calibration it is possible to tune the end-inspiratory (tidal) volume by titrating the inspiratory time on the ventilator. Conclusions Computer simulations of differential multi patient ventilation indicate that the use of 3D-printed flow splitters is viable. However, in situ testing indicates that using 3D printers to produce flow restricting orifices is not recommended, as the flow resistance can deviate significantly from expected values depending on the type of printer used. Trial registration Not applicable.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Shashank S. Kumat ◽  
Panos S. Shiakolas

Abstract Background Tissue healthiness could be assessed by evaluating its viscoelastic properties through localized contact reaction force measurements to obtain quantitative time history information. To evaluate these properties for hard to reach and confined areas of the human body, miniature force sensors with size constraints and appropriate load capabilities are needed. This research article reports on the design, fabrication, integration, characterization, and in vivo experimentation of a uniaxial miniature force sensor on a human forearm. Methods The strain gauge based sensor components were designed to meet dimensional constraints (diameter ≤3.5mm), safety factor (≥3) and performance specifications (maximum applied load, resolution, sensitivity, and accuracy). The sensing element was fabricated using traditional machining. Inverted vat photopolymerization technology was used to prototype complex components on a Form3 printer; micro-component orientation for fabrication challenges were overcome through experimentation. The sensor performance was characterized using dead weights and a LabVIEW based custom developed data acquisition system. The operational performance was evaluated by in vivo measurements on a human forearm; the relaxation data were used to calculate the Voigt model viscoelastic coefficient. Results The three dimensional (3D) printed components exhibited good dimensional accuracy (maximum deviation of 183μm). The assembled sensor exhibited linear behavior (regression coefficient of R2=0.999) and met desired performance specifications of 3.4 safety factor, 1.2N load capacity, 18mN resolution, and 3.13% accuracy. The in vivo experimentally obtained relaxation data were analyzed using the Voigt model yielding a viscoelastic coefficient τ=12.38sec and a curve-fit regression coefficient of R2=0.992. Conclusions This research presented the successful design, use of 3D printing for component fabrication, integration, characterization, and analysis of initial in vivo collected measurements with excellent performance for a miniature force sensor for the assessment of tissue viscoelastic properties. Through this research certain limitations were identified, however the initial sensor performance was promising and encouraging to continue the work to improve the sensor. This micro-force sensor could be used to obtain tissue quantitative data to assess tissue healthiness for medical care over extended time periods.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Matteo Capobussi ◽  
Lorenzo Moja

AbstractLimited access to key diagnostic tools is detrimental to priority health needs of populations. Ear pain, tenderness, itching, and different degree of hearing loss are common problems which require otoscopy as first diagnostic assessment. Where an otoscope is not available because of budget constraints, a self-fabricated low-cost otoscope might represent a feasible opportunity. In this paper, we share the design and construction process of an open-source, 3D printed, otoscope. The prototype was compared to a commercial solution, demonstrating similar overall quality between the instruments.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mee H. ◽  
Greasley S. ◽  
Whiting G. ◽  
Harkin C. ◽  
Oliver G. ◽  
...  

Abstract Background Syndrome of the trephined is a well-recognised phenomenon that occurs in patients following a craniectomy. It is associated with several symptoms, including headaches, motor impairments, cognitive disorders and reduced consciousness. Treatment for the syndrome usually involves replacing the skull defect. Case Study A 71-year-old male underwent a left-sided craniectomy after being diagnosed with biopsy-confirmed invasive squamous cell carcinoma with associated skull erosion. Subsequently, he developed a severe case of syndrome of the trephined (SoT,) resulting in having to lie flat to prevent the motor component of the Glasgow Coma Score (GCS) falling from M5/6 (E3/4 Vt M5/6) to M1 (E3/4 Vt M1) on sitting to 30 degrees. Unfortunately, due to ongoing chest sepsis and physical frailty, he was unable to undergo a cranioplasty. Therefore, to aid in clinical stabilisation, the treating physicians and clinical engineering teams designed and manufactured a prosthesis on-site, allowing rapid patient treatment. The prosthesis led to the patient being able to sit up to 30 degrees without the motor component of the GCS falling from M6 to M1 (E4 VT M6). Conclusion Clinical improvements were demonstrated with definitive neurological improvement after applying the external cranial plate in clinical outcome measures and radiographically. Furthermore, we have shown that rapid prototyping technology provides a flexible solution to synthesise bespoke medical prostheses with the correct expertise and regulatory framework.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Nicole Wake ◽  
Andrew B. Rosenkrantz ◽  
William C. Huang ◽  
James S. Wysock ◽  
Samir S. Taneja ◽  
...  

AbstractAugmented reality (AR) and virtual reality (VR) are burgeoning technologies that have the potential to greatly enhance patient care. Visualizing patient-specific three-dimensional (3D) imaging data in these enhanced virtual environments may improve surgeons’ understanding of anatomy and surgical pathology, thereby allowing for improved surgical planning, superior intra-operative guidance, and ultimately improved patient care. It is important that radiologists are familiar with these technologies, especially since the number of institutions utilizing VR and AR is increasing. This article gives an overview of AR and VR and describes the workflow required to create anatomical 3D models for use in AR using the Microsoft HoloLens device. Case examples in urologic oncology (prostate cancer and renal cancer) are provided which depict how AR has been used to guide surgery at our institution.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Deborah L. Donohoe ◽  
Katherine Dennert ◽  
Rajeev Kumar ◽  
Bonnie P. Freudinger ◽  
Alexander J. Sherman

Abstract Background The ability of 3D printing using plastics and resins that are magnetic resonance imaging (MRI) compatible provides opportunities to tailor design features to specific imaging needs. In this study an MRI compatible cradle was designed to fit the need for repeatable serial images of mice within a mouse specific low field MRI. Methods Several designs were reviewed which resulted in an open style stereotaxic cradle to fit within specific bore tolerances and allow maximum flexibility with interchangeable radiofrequency (RF) coils. CAD drawings were generated, cradle was printed and tested with phantom material and animals. Images were analyzed for quality and optimized using the new cradle. Testing with multiple phantoms was done to affirm that material choice did not create unwanted image artifact and to optimize imaging parameters. Once phantom testing was satisfied, mouse imaging began. Results The 3D printed cradle fit instrument tolerances, accommodated multiple coil configurations and physiological monitoring equipment, and allowed for improved image quality and reproducibility while also reducing overall imaging time and animal safety. Conclusions The generation of a 3D printed stereotaxic cradle was a low-cost option which functioned well for our laboratory.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kelsey N. Sommer ◽  
Mohammad Mahdi Shiraz Bhurwani ◽  
Vincent Tutino ◽  
Adnan Siddiqui ◽  
Jason Davies ◽  
...  

Abstract Background The ability of the patient specific 3D printed neurovascular phantoms to accurately replicate the anatomy and hemodynamics of the chronic neurovascular diseases has been demonstrated by many studies. Acute occurrences, however, may still require further development and investigation and therefore we studied acute ischemic stroke (AIS). The efficacy of endovascular procedures such as mechanical thrombectomy (MT) for the treatment of large vessel occlusion (LVO), can be improved by testing the performance of thrombectomy devices and techniques using patient specific 3D printed neurovascular models. Methods 3D printed phantoms were connected to a flow loop with physiologically relevant flow conditions, including input flow rate and fluid temperature. A simulated blood clot was introduced into the model and placed in the proximal Middle Cerebral Artery (MCA) region. Clot location, composition, length, and arterial angulation were varied and MTs were simulated using stent retrievers. Device placement relative to the clot and the outcome of the thrombectomy were recorded for each situation. Digital subtraction angiograms (DSA) were captured before and after LVO simulation. Recanalization outcome was evaluated using DSA as either ‘no recanalization’ or ‘recanalization’. Forty-two 3DP neurovascular phantom benchtop experiments were performed. Results Clot angulation within the MCA region had the most significant impact on the MT outcome, with a p-value of 0.016. Other factors such as clot location, clot composition, and clot length correlated weakly with the MT outcome. Conclusions This project allowed us to gain knowledge of how such characteristics influence thrombectomy success and can be used in making clinical decisions when planning the procedure and selecting specific thrombectomy tools and approaches.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Olivia Fox ◽  
Andrew Kanawati

Abstract Background 3D-printing has become increasingly utilized in the preoperative planning of clinical orthopaedics. Surgical treatment of bone tumours within the pelvis is challenging due to the complex 3D bone structure geometry, as well as the proximity of vital structures. We present a unique case where a composite bone and nerve model of the lower lumbar spine, pelvis and accompanying nerve roots was created using 3D-printing. The 3D-printed model created an accurate reconstruction of the pelvic tumour and traversing nerves for preoperative planning and allowed for efficient and safe surgery. Case presentation We present a unique case where a composite bone and nerve model of the lower lumbar spine, pelvis and accompanying nerve roots was created using 3D-printing. The bony pelvis and spine model was created using the CT, whereas the nerve roots were derived from the MRI and printed in an elastic material. 3D-printed model created an accurate reconstruction of the pelvic tumour and traversing nerves for preoperative planning and allowed for efficient and safe surgery. Pelvic tumour surgery is inherently dangerous due to the delicate nature of the surrounding anatomy. The composite model enabled the surgeon to very carefully navigate the anatomy with a focused resection and extreme care knowing the exact proximity of the L3 and L4 nerve roots. Conclusion The patient had complete resection of this tumour, no neurological complication and full resolution of his symptoms due to careful, preoperative planning with the use of the composite 3D model.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kimberly K. Broughton ◽  
Bonnie Chien ◽  
Derek Stenquist ◽  
Caroline Williams ◽  
Christopher P. Miller ◽  
...  

Abstract Background With today’s expanding use of total ankle arthroplasty, the ever-present trauma patient, and patients with uncontrolled comorbid conditions, surgeons face significant challenges for lower extremity reconstruction. These patients highlight some of those who may present with unique anatomy, bone loss, infection, and various other local and systemic factors that affect treatment options for successful outcomes. Three dimensional (3-D) printing for medical devices is allowing for new and customized ways to meet patient and surgeon goals of limb salvage and reconstruction. Case presentations While the majority of 3-D printing is done for the purpose of implantation, we present a technical tip for designing a 3-D printed mold from which to create an antibiotic cement spacer for implantation. With two case illustrations including a talus fracture nonunion and infected subtalar arthrodesis nonunion, we describe the process of patient selection, implant design, fabrication, and implantation of a custom molded antibiotic cement talus. Discussion Case illustrations present two successful limb salvage patients while giving a thorough explanation of our technique, learned tips and tricks. This applied technology builds on prior use of antibiotic cement in limb salvage of the lower extremity, most of which are joint sacrificing. 3-D printing the mold for an anatomic talus cement spacer results in a joint sparing limb salvage solution. Innovative 3-D printing technology is merged with current, pertinent literature regarding antibiotic cement to offer surgeons expanded options for temporary or definitive reconstructive techniques in some of the most challenging patients.


Sign in / Sign up

Export Citation Format

Share Document