scholarly journals Object-sensitive Deep Reinforcement Learning

10.29007/xtgm ◽  
2018 ◽  
Author(s):  
Yuezhang Li ◽  
Katia Sycara ◽  
Rahul Iyer

Deep reinforcement learning has become popular over recent years, showing superiority on different visual-input tasks such as playing Atari games and robot navigation. Although objects are important image elements, few work considers enhancing deep reinforcement learning with object characteristics. In this paper, we propose a novel method that can incorporate object recognition processing to deep reinforcement learning models. This approach can be adapted to any existing deep reinforcement learning frameworks. State-of-the-art results are shown in experiments on Atari games. We also propose a new approach called “object saliency maps” to visually explain the actions made by deep reinforcement learning agents.

Decision ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. 115-131 ◽  
Author(s):  
Helen Steingroever ◽  
Ruud Wetzels ◽  
Eric-Jan Wagenmakers

2019 ◽  
Author(s):  
Laura Weidinger ◽  
Andrea Gradassi ◽  
Lucas Molleman ◽  
Wouter van den Bos

2020 ◽  
Vol 34 (10) ◽  
pp. 13905-13906
Author(s):  
Rohan Saphal ◽  
Balaraman Ravindran ◽  
Dheevatsa Mudigere ◽  
Sasikanth Avancha ◽  
Bharat Kaul

Reinforcement learning algorithms are sensitive to hyper-parameters and require tuning and tweaking for specific environments for improving performance. Ensembles of reinforcement learning models on the other hand are known to be much more robust and stable. However, training multiple models independently on an environment suffers from high sample complexity. We present here a methodology to create multiple models from a single training instance that can be used in an ensemble through directed perturbation of the model parameters at regular intervals. This allows training a single model that converges to several local minima during the optimization process as a result of the perturbation. By saving the model parameters at each such instance, we obtain multiple policies during training that are ensembled during evaluation. We evaluate our approach on challenging discrete and continuous control tasks and also discuss various ensembling strategies. Our framework is substantially sample efficient, computationally inexpensive and is seen to outperform state of the art (SOTA) approaches


2020 ◽  
Vol 34 (05) ◽  
pp. 7253-7260 ◽  
Author(s):  
Yuhang Song ◽  
Andrzej Wojcicki ◽  
Thomas Lukasiewicz ◽  
Jianyi Wang ◽  
Abi Aryan ◽  
...  

Learning agents that are not only capable of taking tests, but also innovating is becoming a hot topic in AI. One of the most promising paths towards this vision is multi-agent learning, where agents act as the environment for each other, and improving each agent means proposing new problems for others. However, existing evaluation platforms are either not compatible with multi-agent settings, or limited to a specific game. That is, there is not yet a general evaluation platform for research on multi-agent intelligence. To this end, we introduce Arena, a general evaluation platform for multi-agent intelligence with 35 games of diverse logics and representations. Furthermore, multi-agent intelligence is still at the stage where many problems remain unexplored. Therefore, we provide a building toolkit for researchers to easily invent and build novel multi-agent problems from the provided game set based on a GUI-configurable social tree and five basic multi-agent reward schemes. Finally, we provide Python implementations of five state-of-the-art deep multi-agent reinforcement learning baselines. Along with the baseline implementations, we release a set of 100 best agents/teams that we can train with different training schemes for each game, as the base for evaluating agents with population performance. As such, the research community can perform comparisons under a stable and uniform standard. All the implementations and accompanied tutorials have been open-sourced for the community at https://sites.google.com/view/arena-unity/.


Sign in / Sign up

Export Citation Format

Share Document