Deepwater drilling solutions dual gradient drilling technology

Author(s):  
T.B Prabowo
Author(s):  
R. I. Ganiev ◽  
◽  
Luc Deboer ◽  
A. H. Agliullin ◽  
R. A. Ismakov ◽  
...  

The article is about problem of drilling deepwater oil and gas wells that consists in complicating and increasing cost of their well design due to narrowing mud window at different depths. The authors analyse drilling technology developed and applied in practice of offshore drilling with a dual gradient drilling, which allows drilling significant intervals without overlapping an intermediate casing string. Based on analysis of these technologies and taking into account their disadvantages the authors proposed and tested a new drilling technology of dual gradient drilling with placement of all necessary innovative equipment on drilling platform. Keywords: managed pressure drilling; deepwater drilling; offshore drilling; dual gradient drilling; riser; oil and gas exploration in sea.


Author(s):  
John Shelton ◽  
John Rogers Smith ◽  
Anuj Gupta

A dual gradient, deepwater drilling system based on dilution of riser mud requires economically separating the riser mud into a low density dilution fluid and a higher density drilling fluid. This study investigated the practicality of accomplishing this separation using hydrocyclones and centrifuges and examined the possible benefits and efficiency of each. The separation experiments were conducted using a laboratory centrifuge and 2 inch hydrocyclones. The laboratory centrifuge was able to separate the riser mud into near ideal densities for dilution and drilling fluid. However, the dense slurry retained in the centrifuge had lower emulsion stability than the feed stream. The hydrocyclones achieved much less contrast in density between the low and high density discharges, but consistently resulted in a beneficial increase in the stability of the mud emulsion in all of the flow streams and had more desirable rheological properties. A qualitative comparison indicates that the hydrocyclone separation system may offer a feasible and desirable alternative to centrifuge separation system.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
John Shelton ◽  
John Rogers Smith ◽  
Anuj Gupta

A dual gradient, deepwater drilling system based on dilution of riser mud requires economically separating the riser mud into a low density dilution fluid and a higher density drilling fluid. This study investigated the practicality of accomplishing this separation using hydrocyclones and centrifuges and examined the possible benefits and efficiency of each. The separation experiments were conducted using a laboratory centrifuge and 2 in. hydrocyclones. The laboratory centrifuge was able to separate the riser mud into near ideal densities for dilution and drilling fluid. However, the dense slurry retained in the centrifuge had lower electrical stability than the feed stream. The hydrocyclones achieved much less contrast in density between the low and high density discharges, but their use consistently resulted in a beneficial increase in the stability of the mud emulsion in all of the flow streams and gave more desirable rheological properties. A qualitative comparison indicates that the hydrocyclone separation system may offer a feasible and desirable alternative to a centrifuge separation system.


Author(s):  
Evan H. Zimmerman ◽  
Gai-Lynn E. Marshall
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document